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Abstract—Shielding neural networks (NNs) from untrusted
hosts with Trusted Execution Environments (TEEs) has been
increasingly adopted. Nevertheless, this paper shows that the
confidentiality of NNs and user data is compromised by the
recently disclosed ciphertext side channels in TEEs, which
leak memory write patterns of TEE-shielded NNs to malicious
hosts. While recent works have used ciphertext side channels
to recover cryptographic key bits, the technique does not apply
to NN inputs which are more complex and only have partial
information leaked. We propose an automated input recovery
framework, CIPHERSTEAL, and for the first time demonstrate
the severe threat of ciphertext side channels to NN inputs.

CIPHERSTEAL novelly recasts the input recovery as a two-
step approach — information transformation and reconstruc-
tion — and proposes optimizations to fully utilize partial input
information leaked in ciphertext side channels. We evaluate
CIPHERSTEAL on diverse NNs (e.g., Transformer) and im-
age/video inputs, and successfully recover visually identical in-
puts under different levels of attacker’s pre-knowledge towards
the target NNs and their inputs. We comprehensively evaluate
two popular NN frameworks, TensorFlow and PyTorch, and
NN executables generated by two recent NN compilers, TVM
and Glow, and study their different attack surfaces. Moreover,
we further steal the target NN’s functionality by training a
surrogate NN with our recovered inputs, and also leverage the
surrogate NN to generate “white-box” adversarial examples,
effectively manipulating the target NN’s predictions.

1. Introduction

Untrusted hosts constitute one major threat to the confi-
dentiality of neural networks (NNs) and user data. Training
NNs on malicious host platforms may leak the intellectual
properties (IPs) of NN developers. Similarly, querying NNs
from adversarial providers can expose user’s private data.
Trusted Execution Environments (TEEs) have been emerg-
ing as a promising and perhaps the most practical solution
to shield NN training and achieve secure NN inference on
untrusted hosts [56, 43, 39, 49, 30]. TEEs are hardware-
based security mechanisms that encrypt sensitive data into
ciphertexts via memory encryption. They are often imple-

mented as a secure co-processor (e.g., Intel SGX [32]) or a
secure virtual machine (e.g., AMD SEV [35]).

A well-known security concern of TEEs is their vulner-
ability to micro-architectural side channels such as cache or
timing attacks [21, 58, 80], where attackers exploit secret-
dependent data or control flows of TEE-shielded programs.
Nevertheless, inputs of TEE-shielded NNs are unexploitable
through micro-architectural side channels [27]: an NN is es-
sentially a sequence of matrix computations, which exhibits
a constant-time computation paradigm, i.e., data and control
flows in NNs are fixed regardless of its inputs.
A New Leakage. Despite the general security belief, this
paper shows that input data of TEE-shielded NNs can be
leaked via ciphertext side channels, and the recovered inputs
can be further leveraged to steal the NN’s functionality.
Ciphertext side channels denote a recently disclosed fine-
grained information leakage that particularly exists in TEEs.
It can leak memory write patterns (that are unexploitable
through micro-architecture side channels) of TEE-shielded
NNs to the malicious host. Since commercial TEEs widely
adopt deterministic encryption, when secrets are stored at
fixed physical locations in TEE’s encrypted memory region
(e.g., the VM save area, kernel data structures, user-land
stacks, etc.), an identical ciphertext is generated for the same
plaintext. Consequently, an adversary (e.g., hypervisors, the
host OS) having read access to the ciphertext (either via
software access [47] or via memory bus snooping [42]) can
recover informative patterns in plaintext.

This paper for the first time recovers NN inputs from
ciphertext side channels of TEE-shielded NNs. The recovery
does not rely on the structure or model weights of the target
NN. Moreover, unlike existing NN attacks that require full
knowledge of the target NN’s input domain (i.e., having
data that cover all classes in the target NN’s training data;
see detailed clarifications in Sec. 4), we successfully recover
NN inputs with only partial- or zero-knowledge of the input
domain. By attacking TEE-based secure inference, user pri-
vacy in typical machine-learning-as-a-service (MLaaS) can
be largely jeopardized, e.g., in cloud medical image diagno-
sis. Further, by attacking the TEE-protected training phase,
private training inputs can be gathered to subsequently train



another NN to steal the target NN’s functionality or boost
adversarial example (AE) attacks.
Technical Challenges. Recent works have tentatively il-
lustrated the threat of ciphertext side channels to semi-
automatically recover cryptographic keys [47, 44]. NN in-
puts (e.g., images), which decide NN functionality or in-
dicate user privacy, are fundamentally different from cryp-
tographic keys. In fact, cryptographic key bits are either 0
or 1, and each bit often directly determines one ciphertext
collision record — as a result, each record (i.e., collide or
not) manifests a one-to-one mapping to each key bit. Never-
theless, during NN’s computation, ciphertext collisions are
induced by writing features (extracted from NN’s inputs)
to memory, and certain input information has been lost
during the feature extraction stage. Moreover, a unit of the
written feature typically corresponds to an image region,
which has multiple pixels and each pixel’s value is between
0 and 255. The large search space of NN inputs and the
limited observation in ciphertext side channels make the
input recovery inherently challenging.

This paper presents a generic and automated framework,
CIPHERSTEAL, to address key challenges in recovering NN
inputs from ciphertext side channels. CIPHERSTEAL recasts
the input recovery as a two-step approach: transformation T
and reconstruction R. Given that certain information of NN
input x is lost in side-channel observation c, CIPHERSTEAL
first transforms the remaining information in c to h = T (c)
where h is presented in an aligned form with x (e.g.,
h is a partially recovered image). Then, with h as the
basis, CIPHERSTEAL reconstructs the lost information via
R. By optimizing the reconstruction with Bayesian theorem,
CIPHERSTEAL eventually yields R(h) = x∗ ≈ x.

Results. We employ CIPHERSTEAL to attack both the
training and inference phases of TEE-shielded NNs. We
consider two NN execution modes: the interpreter mode
(running NNs in PyTorch or TensorFlow) and the executable
mode (compiling NNs using compilers like TVM [11] or
Glow [67]). CIPHERSTEAL is evaluated on 13 real-world
and large-scale NNs of various structures (e.g., Vision Trans-
former [15]), training algorithms and tasks. We benchmark
the recovery over five popular datasets of two representative
input formats: image and video. In more than 100 different
settings, we observe a consistently encouraging success rate
(e.g., > 90% in half of the settings). We also demonstrate the
high quality of inputs recovered from the TEE-shielded NN.
By training another NN with these stolen training inputs, we
obtain a surrogate NN exhibiting comparable performance
(e.g., > 98% consistency) with the target NN. Also, using
“white-box” adversarial examples generated over the sur-
rogate NN, we largely enhance adversarial attacks towards
the TEE-shielded NN (e.g., from 0 to a 30% attack success
rate). In sum, we make the following contributions:

• (Concepts) While NN inputs were believed free of micro-
architecture side channels, we unveil the new attack sur-
face of ciphertext side channels in TEE-shielded NNs,
where malicious hosts can recover NN inputs to steal user
privacy and NN functionality.

• (Techniques) We design a generic and automated frame-
work, CIPHERSTEAL, to deliver practical NN input re-
covery with negligible knowledge of the target NN. We
recast the recovery as a two-step approach and propose
optimizations to improve its efficiency and accuracy.

• (Attacks) We constantly achieve promising input recov-
ery on different NNs, input formats, datasets, runtimes,
side-channel observations, and levels of attacker’s pre-
knowledge, etc. Our recovered inputs can be further lever-
aged to steal the target NN’s functionality and boost
adversarial example attacks.

• (Findings) We systematically study the leakage sites in
different NN runtimes and summarize the lessons we
learned. Our findings can provide insights for deploying
NNs and designing NN interpreters/compilers.

Artifact: The code, data, and more examples of recov-
ered images and videos, are provided at https://github.
com/Yuanyuan-Yuan/CipherSteal [1].

2. Preliminaries

2.1. Neural Networks (NNs) and NN Runtimes

Unlike traditional programs (e.g., an RSA implemen-
tation) whose internal logics are hardcoded with human-
written instructions, decision logics in NNs are formed by
implicitly “learning” rules from manually annotated data.
The execution of an NN is implemented as a sequence
of matrix computation, with each computation operator
propagating its output to the subsequent operator. Such
computations are constant-time: the data and control flows
of an NN’s computation are fixed regardless of its in-
puts. NNs also feature a bidirectional computation: forward
propagation (FP) and backward propagation (BP). The FP
extracts features from inputs whereas the BP adjusts the
NN’s weights to tune the decision logics.

Modern NNs often run with the following two runtimes.
Interpreter-Based. Typical interpreter-based NN frame-
works such as PyTorch [64] and TensorFlow [2] are software
libraries that provide a programming interface for developers
to build and run NNs. Their runtime system consists of two
components: (1) the Python interfaces that parse and inter-
pret the high-level NN into a set of matrix operations, and
(2) third-party linear algebra libraries (e.g., OpenBLAS [97],
MKL [77], and Eigen [23]) that implement such operations
with efficient low-level binary code. NN frameworks usually
allow users to run NNs in both forward and backward
directions. For inference, an NN is executed in the forward
mode. To train an NN, the computational graph of an NN is
first constructed with intermediate results generated during
the FP. Then, the computational graph is traversed in reverse
order during BP, and the intermediate results are used to
compute gradients for updating weights.
Compiler-Based. NNs are increasingly compiled into ex-
ecutables for better performance across different plat-
forms. Two mature and actively maintained NN compilers,

https://github.com/Yuanyuan-Yuan/CipherSteal
https://github.com/Yuanyuan-Yuan/CipherSteal


TVM [11] and Glow [67], emit standalone executables that
can run with minimal external dependencies. Both compilers
follow similar design principles: they start from a high-level
graph representation of the NN and progressively lower it to
intermediate representations (IRs), allowing more platform-
specific optimizations, and eventually emit machine code.

2.2. TEEs and Ciphertext Side Channel

TEEs aim to protect sensitive data by providing iso-
lated environments, namely enclaves, for program execution.
Modern TEE systems like AMD SEV, assisted by trusted
hardware, encrypt each program’s memory with a unique
AES encryption key, thus preventing malicious hypervisors
from accessing or modifying data used during execution.
There is a growing trend of deploying NNs in TEEs [43, 39,
49, 30]. With TEEs, developers/users could protect NNs and
preserve their data privacy while deploying/querying NNs in
hardware devices controlled by untrusted hosts.
Deterministic Encryption. Encryption mode in TEEs is
constrained by two factors. First, to support efficient ran-
dom memory access that requires independently encrypted
memory blocks, chaining mode (e.g., CBC mode) is inap-
plicable. Second, to encrypt large memory, the encryption
mode should not support freshness (e.g., CTR mode) given
the additional space required by counters. Therefore, AES
encryption with deterministic, block-based mode is widely
used by TEEs with large encrypted memory, such as AMD
SEV [35], Intel TDX [32], Intel SGX on Ice Lake SP [32,
33], and ARM CCA [4]. For instance, the memory of TEE-
shielded NN can be encrypted using 128-bit AES symmetric
encryption, i.e., each aligned 16-byte memory block m is
encrypted independently. Although a tweak function T (Pm)
is used to calculate a mask value to be XORed with m before
encryption, T (Pm) takes the physical address Pm of m as
the only input. In short, the ciphertext of m is calculated
as c = ENC(m ⊕ T (Pm)) ⊕ T (Pm), where the same m
stored in the same physical address Pm is always encrypted
into identical ciphertext [47].
Ciphertext Side Channel. Recent studies [47, 44] uncover
ciphertext side channels to steal sensitive data (e.g., private
keys). Ciphertext side-channel attacks exploit the determin-
istic encryption to infer the equality relations of consequent
memory written values, which should be protected by TEEs.
Suppose the ciphertext does not change after a memory
write, the attacker easily infers that the written value equals
the value previously stored in the target memory address. In
contrast, a different ciphertext indicates a changed written
value. With such capability, it is often possible to recover
certain plaintext bits in the private keys [44, 14]. In terms
of real-world exploitation, Li et al. propose the first ci-
phertext side-channel attack targeting AMD SEV-SNP [47]
and exploit cryptographic libraries like RSA. While most
discovered vulnerabilities living in AMD TEE [60, 84, 48,
46, 45] are promptly fixed, the ciphertext side channel,
due to the design limitation of SEV-SNP, cannot be easily
mitigated and is still exploitable by attackers [44].

*s = 0;
while(i++ < L){

*s += k[i];
} TEE

Ciphertext
cs Check collision

co == cs
k[0]:0

c1 != c0
k[1]:1

Figure 1. Ciphertext side-channel leakage of cryptographic keys. Since each
key bit (i.e., k[i]) is either 0 or 1, attackers can directly infer the exact key
bit values based on ciphertext collision information.

Fig. 1 illustrates a schematic view of the ciphertext side-
channel attack towards the cryptographic key k, where a
TEE-shielded program consecutively writes to the address s.
The ciphertext cs is generated when the program initializes s
with 0. Because the ciphertext c0 (when writing k[0] to s)
equals cs, attackers can infer that k[0] is 0. Accordingly,
since key bits are either 0 or 1, attackers also know that
k[1] is 1 given that c1 6= c0.

3. Motivations

This section elaborates on challenges and our insights
on recovering NN inputs from ciphertext side channels. To
ease the presentation, we use images as representative NN
inputs; however, our techniques are generic and apply to
other types of NN inputs like videos.
Significance of Input Data in NN. As introduced in
Sec. 2.1, NNs essentially enable a data-driven programming
paradigm. Depending on the phase of being fed into NNs,
input data act as the following key roles:
Intellectual Property: During the training phase, an NN
learns rules from training inputs to form its decision logics.
Preparing training inputs requires considerable manual effort
and human expertise. In that sense, training inputs denote
the intellectual property of the NN owner. Since attackers
can train equivalent NNs of the same functionality using
the recovered training inputs, leaking training inputs also
compromises the confidentiality of TEE-shielded NNs.
User Privacy: In modern MLaaS, users often query cloud
NNs with their private data (e.g., medical images of certain
diseases). Since TEEs are widely adopted to ensure secure
inference on NNs hosted by untrusted service providers [56],
leaking user inputs and prediction results from TEE-shielded
NNs largely violates the privacy guarantee.

TEE-shielded NNs should incur ciphertext collisions due
to the following reasons. First, the matrix computations in
NNs are implemented as nested loops, which frequently
write intermediate results to fixed memory addresses. Be-
sides, each NN layer has a non-linear activation function;
it often maps the intermediate results into a smaller region
(e.g., Sigmoid) or discrete values (e.g., ReLU), largely
increasing the chance of ciphertext collisions (see Sec. 7.1).
Crypto. Keys vs. NN Inputs. Nevertheless, recovering NN
inputs from ciphertext side channels is fundamentally more
challenging than cryptographic keys. As illustrated in Fig. 1,
each ciphertext collision in cryptographic software is often
induced by writing a key bit. Since key bits are either 0



loop:
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jmp loop
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Figure 2. Ciphertext collisions are induced by writing intermediate features
(often 32-bit in floating-point NNs) extracted from inputs into memory.

or 1, the collision information can be accurately mapped to
each key bit. In contrast, as shown in Fig. 2, intermediate
results written by an NN are features extracted from its
input; these features are highly abstracted such that certain
input information is inevitably lost. Moreover, a ciphertext
collision record usually corresponds to features of an image
region (e.g., in convolutional NNs). Given that multiple
pixels exist in an image region and each pixel value ranges
from 0 to 255, the collision information is extremely limited,
let alone the lost information during feature extraction.
Existing NN Input Recovery. One may expect to adopt
prior input recovery methods or recover NN inputs from
other side channels. We clarify the infeasiblities below.

Yuan et al. have recovered NN inputs from cache side
channels of the data pre-processing modules in MLaaS [94].
However, their context does not suffer from the information
loss and limited observation issues: cache side channels in
pre-processing modules are directly induced by image pix-
els, and the observable cache states are highly informative
(e.g., a L1 cache may have 64 cache sets, resulting in 64
different states). Moreover, as clarified in Sec. 2.1, NNs do
not have cache side channels due to their fixed data/control
flows, and the leakage in pre-processing modules can be
easily evaded by using already-processed inputs.

Several previous works tried to recover NN inputs from
power side channels of NNs [59, 82]. They require binarized
NNs (i.e., whose weights are either -1 or 1) and assume
white-box access to target NNs. Importantly, they can only
recover the coarse shape in images and only apply to black-
and-white images of clean backgrounds. Nonetheless, mod-
ern NNs have floating-point weights and take diverse real-
world images, making those recovery methods inapplicable.
TEE-shielded NNs are also fully black-box to attackers.
Observations & Insights. This paper identifies the follow-
ing insights to achieve NN input recovery from ciphertext
side channels of TEE-shielded NNs. (1) Different from
cryptographic keys where key bits are private, not all pixels
in an image are secrets. E.g., failing to recover a few pixels
in an image’s background still indicates a successful input
recovery, as long as the recovered inputs leak user privacy
and enable stealing NN functionality. Moreover, (2) unlike
cryptographic key bits that are independently sampled, pixel
values are highly correlated. As pointed out by [94], pixel
values have implicit constraints to form meaningful contents
(e.g., randomly sampled pixels usually do not constitute
meaningful images). Such constraints can be leveraged to
reconstruct the lost information (see our solutions in Sec. 5).

Taking the above challenges and insights, we therefore
do not aim to recover exact pixels in images, but recover im-

age contents that are visually identical to the original ones.
As evaluated in Sec. 7, our recovered inputs significantly
leak user privacy, and enable effective functionality stealing
and downstream attacks. Our techniques reconstruct the lost
information even from limited observations, and are highly
practical and effective under different levels of attacker’s
pre-knowledge, as will be introduced below in Sec. 4.

4. Threat Model and Positioning

Attacker’s Capability. Aligned with existing works that
attack/harden TEEs or shield NNs with TEEs [44, 14, 86],
we follow the established threat model where adversaries
are host OS or hypervisors: the adversary is assumed to
have full system privilege on the machine and is also
capable of performing physical attacks, including inferring
address and content of every memory read via memory bus
snooping [42], reading remnant data from the DRAM via
cold boot attack [22], and accessing memory directly via
DMA devices [73]. Nevertheless, attackers can only read
the encrypted data and are unable to decrypt the ciphertext.
Therefore, attackers cannot directly inspect the content of
the deployed NN (e.g., reading its structure/weights). Also,
when a normal user is using the NN, its inputs and predic-
tions are unknown to attackers since they are encrypted.
TEE & TEE-Shielded NNs. Following existing works that
deploy NNs in TEEs [57, 28, 70, 74], we assume that
attackers can query the deployed NNs with their own data.
However, to mitigate query-based NN cloning [61, 63, 75],
TEE-shielded NNs only return the final prediction label to
those who issue the queries; all intermediate results and
the prediction confidence (i.e., the probability of the input
belonging to each class) are not returned [98]. We also
assume that the target NN is either already well-trained
before deployed in TEEs or the NN can be trained/fine-
tuned inside TEEs; both are common in practice.

The software stack inside the VM, including the OS, the
NN runtime, and the NN itself, is secure and bug-free, such
that the adversary cannot voluntarily alter its control flow or
force it to leak secrets. The encryption algorithms of TEEs
are also secure; adversaries cannot decrypt the ciphertext.
We assume the hardware and microcode of the processor
are up-to-date: known attacks against SEV, SEV-ES, and
SEV-SNP [34] have all been fixed, leaving only generalized
ciphertext side-channel leakage discovered in [47] for use.
Attacker’s Knowledge of the Target NN. Our input recov-
ery has much weaker requirements than previous attacks.
NN Structure and Weights. Previous NN attacks [9, 20] (see
details in Sec. 4.1) often require full implementation details
of NNs, including the structure and trained weights. In
contrast, when recovering NN inputs, we do not require
knowing the target NN’s structure or weights.
Input Format & Input Domain. Aligned with existing NN
attacks and side-channel attacks [75, 51, 9, 94, 17], we
assume attackers can query the deployed NN with their own
data and observe ciphertext side channels. We first define
two terms related to NN inputs.



Definition 1 (Input Domain). An NN’s input domain denotes
the set of its supported classes.

Similar to C/C++ software that has input type restrictions
(e.g., int vs. float), NNs also have constraints on their
valid inputs, which are formed over the semantics level.
These valid inputs constitute the input domain of the NN, as
defined in Def. 1. For example, the input domain of an NN
classifying digit one and zero consists of the class “zero”
and “one.” Similarly, for medical image diagnosis, the input
domain is formed by all disease classes an NN can diagnose.

Definition 2 (Input Format). Input Format denotes the union
over input domains of different NNs serving the same usage.

Beyond the input domain, we further define the input
format in Def. 2, given that NNs having the same usage
may have different input domains. For instance, although
two NNs capable of diagnosing different chest diseases
have different input domains, they both accept chest X-ray
images as inputs. Here, chest X-ray image is their input
format. Nevertheless, face photos and chest X-ray images
are of different input formats, as they often correspond to
NNs serving different usages. Note that our definition of
input format is different from the conventional “format” in
file extensions (e.g., .PNG vs. .JPEG). When processing
inputs, NNs do not distinguish input of different extensions;
raw input files are decoded first and then converted into
floating-point matrices as NN inputs.

Existing NN attacks [75, 72, 8, 9] (see detailed explana-
tions in Sec. 4.1) require having data covering the full input
domain, which may not be always feasible. For example,
to attack a disease-diagnosing NN, attackers may not have
medical images covering all diseases supported by the NN.
However, having data of the same input format is often
feasible, e.g., it is practical to collect some benign medical
images. The overly strong requirement on input domain
limits the application scope of existing NN attacks. Our
input recovery, in contrast, has a much weaker requirement
that only assumes having data of the same input format. This
way, we can recover data covering the target NN’s input
domain to enable previous attacks, rendering the severity of
the leakage and the superiority of our techniques.

In some cases, an NN’s input domain may be covered
by public data (e.g., a classifier for cat and dog images).
Therefore, to comprehensively assess attackers’ (potential)
capabilities and the attack surfaces of data leakage in TEE-
shielded NNs, we evaluate our input recovery under different
knowledge of the target NN’s input domain: ¬ a zero-
knowledge (ZK) attacker who does not have input from
the target NN’s input domain;  a partial-knowledge (PK)
attacker having inputs from a subset of the input domain;
and ® a full-knowledge (FK) attacker whose inputs cover
the full input domain. Noting that having data from the
same domain does not indicate having the same inputs.
The attacker’s data and target NN’s inputs may be from the
same class but are always different in our setting; otherwise,
stealing the target NN’s inputs is unnecessary.

4.1. Positioning w.r.t. Previous Attacks

CIPHERSTEAL, for the first time, recovers high-quality
NN inputs from side channels of TEE-shielded NNs; it can
complement existing side-channel attacks towards NNs and
largely augments algorithmic attacks on TEE-shielded NNs.
Completing Side-Channel Attacks Towards NNs. Our in-
put recovery is orthogonal to, and can complement existing
side-channel attacks that recover NN structures [31, 91, 27,
90, 50, 17, 16]. Moreover, we argue that recovering NN
inputs generally denotes more severe and new threats, be-
cause NN structures may be derived from public backbones.
Importantly, despite that recovering an NN’s weights is still
hardly achievable,1 attackers can leverage our recovered
inputs to steal the target NN’s functionality (a.k.a., obtaining
different but equivalent weights).

TABLE 1. REQUIREMENTS OF PREVIOUS NN ATTACKS AND
CIPHERSTEAL. AND INDICATE NEEDED AND NOT NEEDED.

Attack
Pre-Knowledge of the Target NN

Prediction Input Input
Weights Gradients Confidence Domain Format

Steal Functionality
Fool Prediction
CIPHERSTEAL

Augmenting Algorithmic NN Attacks. As in Table 1,
previous NN attacks can be divided into two categories.
Steal Functionality. Since recovering exact NN weights is
challenging, query-based inference attacks [75, 51, 63] are
proposed to steal NN functionality. In short, attackers query
the target NN and let their own NN duplicate the prediction
confidences (i.e., probabilities of the input belonging to all
possible classes). However, such attacks are mitigated by
TEE-shielded NNs which do not return prediction confi-
dences. Moreover, the stealing is confined by the attacker’s
queried data: to steal the full functionality, attackers must
have data covering the target NN’s full input domain. For
instance, it is infeasible to steal an NN’s disease-diagnosing
capability without images containing diseases. Also, to pre-
cisely steal the functionality, queried inputs are expected to
be close to the target NN’s training inputs.

Our input recovery, in the PK and ZK settings (as
discussed in Sec. 4), can boost query-based attacks by recov-
ering input in the full input domain. Further, we successfully
recovered NN inputs during the training phase; with the
recovered training inputs, CIPHERSTEAL facilitates more
precise functionality stealing.
Fool Prediction. Previous works fool an NN’s prediction by
generating adversarial examples (AEs) [20, 54, 9]. The goal
is to manipulate the target NN’s prediction (e.g., let the
NN always predict “benign” for all diseases) or downgrade
the accuracy (i.e., deplete the NN’s functionality). AEs are
generated by slightly perturbing an NN’s inputs which often
rely on white-box access to the target NN (e.g., computing
gradients). However, these white-box attacks are mitigated

1. Existing works steal NN weights by reading plaintext transmitted
through PCI bus [100]; TEEs mitigate this via traffic encryption.



by TEE-shielded NNs whose weights are encrypted. Nev-
ertheless, since an NN’s vulnerabilities to AEs are mostly
inherited from training data [20, 89, 92], our disclosed data
leakage can enable these white-box attacks by generating
AEs over a surrogate NN trained with CIPHERSTEAL’s
recovered training inputs (see results in Sec. 7.4).

5. Recovering NN Inputs

When deployed in TEEs, an NN’s trained weights, in-
puts, outputs, and all intermediate computation results are
encrypted. However, as introduced in Sec. 2, due to the
deterministic encryption in TEEs, ciphertext encrypted at a
fixed physical address is only decided by the plaintext stored
in memory. That is, whenever new plaintext is written at a
certain physical address, by observing whether the ciphertext
changes, we can infer if the plaintext is different from the
historical content stored at that address. This way, when the
target NN is taking an input, we can generate a binary se-
quence (each binary value “0/1” flags whether the ciphertext
changes), which depends on the plaintext input, for each
physical address during one execution of the target NN.
These binary sequences, after being concatenated, denote
one ciphertext side-channel trace used by CIPHERSTEAL.

Similar to existing profiling-based side-channel at-
tacks [55, 38, 25, 94, 17], CIPHERSTEAL also consists of
an offline profiling and an online attack stage.
Offline Stage. Given a TEE-shielded NN F , the attacker
prepares some data X′ and uses them to query F for pro-
filing. When querying, the attacker simultaneously logs the
ciphertext side-channel traces C′F . Finally, with the collected
C′F and the corresponding X′, CIPHERSTEAL established a
mapping A : C′F → X′ for input recovery. The A should
generalize well to unknown NN inputs.

Different from previous query-based attacks [75, 51,
63], CIPHERSTEAL does not use the queried prediction; it
only infers how ciphertext side channels change with inputs.
Thus, querying the target NN with data out of its input
domain is still feasible (e.g., under the ZK setting), despite
that the predictions are no longer meaningful.
Online Stage. During the online attack, whenever the target
NN takes an unknown input x ∈ X (either for inference
or training), the attacker logs the ciphertext side-channel
trace c and uses CIPHERSTEAL to recover x from c. Note
that X′ ∩ X = ∅. X′ and X have the same input format
(defined in Def. 2) but may cover different input domains.
CIPHERSTEAL is agnostic to the specific TEE platform
or side-channel logging tools (e.g., CipherLeak [47]);
as evaluated in Sec. 7.3, CIPHERSTEAL works well for
different ciphertext side channels.

5.1. Problem Reformulation

Information Loss and Decomposition of A. As mentioned
in Sec. 3, ciphertext collisions in TEE-shielded NNs are due
to writing intermediate results to memory, which are highly
abstracted features of NN inputs. Extracted features may

vary with the task an NN performs. For example, an NN may
focus on outlines of faces for image segmentation but eyes
for face recognition. Therefore, certain information in the
input is inevitably lost during this feature extraction process.
In addition, ciphertext side channels, which characterize if
two consecutive memory writes to the same addresses have
the same content, only provide an incomplete and coarse-
grained observation of intermediate outputs.

Thus, it is infeasible to recover the exact same input
from ciphertext side channels due to the information loss
mentioned above. The key challenges that CIPHERSTEAL
addresses are 1) extracting the information leaked in cipher-
text side channels and 2) utilizing the extracted (incomplete)
information to reconstruct the lost information. Accordingly,
A is decomposed into two phases: a transformation T and
a reconstruction R. The transformation T transforms the
form of the information retained in ciphertext side channel
c (which is generated when the target NN is executing with
input x) to get h = T (c), where h denotes the re-formed
information from c that is presented in an aligned form with
NN inputs (e.g., a burred image whose details are lost; see
Fig. 3). Then, the reconstruction R aims to reconstruct the
lost information in h to get x∗ = R(h) which is close to x.
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Figure 3. Decompose A : c → x as transformation T and reconstruction
R.R is implemented via its inversion p(h|x∗) and the realism term p(x∗).

Transformation T . Obtaining T is straightforward. Attack-
ers can directly force T to output x when T takes the
corresponding c. By minimizing the distance between T (c)
and x, T (c) is guided to represent in an aligned form with x.
For example, if x is a chest X-ray image, T (c) will also be
a (blurred) chest X-ray image. However, T (c) often cannot
generate the original x, because information of x has been
unavoidably lost in c. Instead, T (c) should output h which
properly re-forms the remaining information in c.
Reconstruction R. Building R is inherently challeng-
ing since it requires “creating” information and refining
h = T (c). While attackers may expect to infer the lost
information, this process, if at all possible, should be data-
intensive and not practical due to the transferability and
generalizability issues. First, different NNs may have dis-
tinct preferences when extracting features from inputs; the
R built for one target NN can hardly be transferred for
another different target NN, and building one R for each
target NN is costly. Second, inferring lost information may
rely on the contents of each input and is input-dependent
(e.g., the rule of inferring missed ears for cat images does
not apply to inferring wheels in car images). Given that the
target NN’s inputs are unknown, the inferred R using the



attacker’s own data may not generalize to them (especially
PK or ZK settings discussed in Sec. 4).
Revisit the Reconstruction: A Bayesian Perspective. To
alleviate the above hurdles, we view R from the Bayesian
perspective. Given h = T (c) transformed from a ciphertext
side-channel observation c, R aims to achieve the objective:

argmax
x∗

p(x∗|h), (1)

where p(x∗|h), which infers x∗ based on h, is maximized
when x∗ equals the NN input x that produces c. According
to Bayesian theorem, p(x∗|h) in Eq. 1 can be re-formed as:

p(x∗|h) = p(h|x∗)p(x∗)
p(h)

(2)

Since h is known, p(h) is accordingly constant. As illus-
trated in Fig. 3, the objective in Eq. 1 is equivalent to

argmax
x∗

p(h|x∗)p(x∗), (3)

where p(h|x∗), which infers h based on x∗, is the inversion
of the reconstruction R. p(x∗) denotes the realism of x∗,
i.e., how likely x∗ is semantically meaningful (e.g., a valid
medical image rather than random pixels).

Estimating p(x∗) has been widely studied, and exist-
ing research can provide out-of-the-box solutions [19, 40].
Moreover, since p(x∗) is only related to the attacker’s data
X′, once estimated, it can be applied to any target NNs
regardless of their tasks. This way, an attacker only needs
to estimate p(h|x∗) for each target NN.

Estimating p(h|x∗) is inherently easier than estimating
p(x∗|h) as it “removes” information from x∗. Intuitively,
if x∗ is an image, p(h|x∗) aims to answer the question:
“What details should be removed from x∗ to mimic the
feature extraction of F?” Thus, p(h|x∗) manifests better
generalizability: the pattern of information removal is mostly
decided by the target NN’s task (i.e., the feature extraction
mentioned in the question) instead of a specific input. For
example, if x∗ is a face photo and the target NN recognizes
human identity, p(h|x∗) simply ignores the face orientation
but p(x∗|h), which aims to reconstruct the orientation, de-
pends on x∗ because face orientations vary in different x∗.

5.2. Implementation Considerations

This section introduces how different procedures formu-
lated in Sec. 5.1 are implemented in CIPHERSTEAL.
Implementation using Neural Networks. In practice, we
find that ciphertext side channels logged during one NN ex-
ecution may be lengthy due to the matrix computations (i.e.,
nested loops) in NNs. Also, NN inputs are high-dimensional
data like images and videos, which have semantically mean-
ingful contents. Hence, we implement T , p(h|x∗), and p(x∗)
using neural networks given their capabilities of processing
lengthy side-channel traces and understanding complex NN
inputs [94, 71, 19]. Therefore, our offline stage trains T ,
p(h|x∗), and p(x∗) using the attacker’s own data X′ and
the corresponding ciphertext side channels. The online stage
directly applies them to the target NN.

Training Objective of T . The transformation is imple-
mented as an NN Tθ, where θ denotes its weights. Tθ is
trained during the offline stage using the attacker’s data
X′ and their derived ciphertext side channels C′F . For each
x ∈ X′ and its corresponding c ∈ C′F , the training of Tθ(c)
is guided with the objective:

argmin
θ
L(x, Tθ(c)) (4)

where L denotes the distance between x and the transformed
information in c. As mentioned in Sec. 5.1, with the objec-
tive of minimizing L, θ is optimized such that information
in c is re-formed as h = Tθ(c), whose form is aligned to
x. L can be set as the mean squared error (MSE) or other
advanced loss functions if applicable; see Appx. A.
Time Series. Besides recovering images, we also consider
video as one representative sequential data of NN inputs.
Compared with images, videos additionally include time-
series information. A video can be viewed as a sequence
of image frames where two adjacent frames are correlated.
Recovering videos is conceptually similar to recovering
sentences, which is a sequence of words, but is technically
harder. To recover the video x from its ciphertext side-
channel trace c, the Tθ is recurrently called. At each time
step i for the frame fi (i.e., an image) in the video x, Tθ
takes two inputs: 1) c and 2) the recovered image frame
fi−1 at the previous step. This way, T recurrently outputs
video frames which eventually constitute the video x. In
particular, when reconstructing the first frame f0, T takes c
and an empty variable f∅ = 0 as inputs.
Inverting Reconstruction: p(h|x). As shown in Sec. 5.1,
we decompose the reconstruction as p(h|x) and p(x). The
p(x|h), which is the inversion of the reconstruction, is
implemented with an NN Iω of weights ω. Iω is simul-
taneously trained with Tθ, but from a different direction:
Iω takes x ∈ X′ as inputs and is expected to output Tθ(c),
where c is the corresponding ciphertext side channel of x.
Accordingly, the training objective in Eq. 4 is extended as:

argmin
θ,ω

L(x, Tθ(c)) + L(Iω(x), Tθ(c)) (5)

Ensuring the Realism: p(x). Estimating p(x) has been
widely studied via generative models (e.g., GANs [19], Dif-
fusion models [40]). Given a generative model G, p(x) can
be estimated by establishing a mapping between different
x and points sampled from a continuous latent space Z.
Since Z is continuous, infinite and diverse (new) x can be
represented as the results of interpolation and exploitation
in Z [19]. Therefore, by randomly sampling z from Z, vivid
and new samples can be generated by G(z). Note that p(x)
is estimated using the attacker’s own data X′.
High-Level Attack Pipeline. Once Tθ, Iω, and G are well-
trained, they can be employed to recover NN inputs during
the online attack. Suppose a ciphertext side-channel trace c
is logged when the target NN is taking an unknown input x,
the attacker first transforms c to h = Tθ(c). To reconstruct
the lost information in h, the attacker needs to optimize the
following objective:

argmin
z∗

L(h, I ◦G(z∗)) (6)



which can be achieved via optimization such as stochastic
gradient descent (SGD) [37]; see detailed discussions in
Appx. A. The objective in Eq. 6 updates z∗ to generate
different G(z∗). This process is equivalent to searching for
a valid input (of rich details) that can lead to the same h.
Since partial information in x is retained in h and pixels in
images (or video frames) are highly correlated [94], h can
guide G(z∗) to be close to x.

6. Evaluation Setup and Configuration

NNs, Datasets, Tasks, and Input Domain. Table 2 lists
our evaluated NNs and datasets. These NNs are represen-
tative and diverse in structures. We follow their standard
configurations and the trained NNs are provided in our arti-
fact [1] for reproducibility. We consider both classification
and regression tasks. The datasets are also diverse, including
images and videos that cover representative real-life scenar-
ios. For different datasets and NNs, we construct different
experiments where attackers have varied knowledge of the
input domain, as highlighted in Table 2. The experiment IDswgA - wgM in Table 2 are consistently used in the rest of this paper
to ease finding the setups.

For FK and PK cases, to ensure that NN owners, users,
and attackers do not have overlapped data, we use half of
the data in the original training split as NN owners’ data
to train the target NN. The remaining data in the training
split are used as the attacker’s query data; accordingly,
data in the original test split are treated as user inputs.
For ZK cases, attacker’s data and owner’s/user’s data are
from different classes, ensuring that they do not overlap.
Noteworthy, for human action (video) classification ( wgH ),
despite that attacker’s data cover all actions (i.e., FK), the
human identities of attacker’s videos and owner’s/user’s
videos do not overlap.
CIPHERSTEAL Configuration. Following [94], both T and
p(h|x) in Fig. 3 are implemented as auto-encoders. Since T
transforms side-channel traces to images (or video frames),
its auto-encoder consists of a side-channel trace encoder
and an image decoder. p(h|x), in contrast, takes images as
inputs and outputs their coarse-grained versions. Hence, the
auto-encoder of p(h|x) has an image encoder and an image
decoder. We reuse the image/side-channel encoders and
image decoders from [94]; more configuration suggestions
for different scenarios are provided in Appx. A.

For each attacked NN, CIPHERSTEAL requires training
the two corresponding auto-encoders. Our training is con-
ducted on one NVIDIA GeForce RTX 2080 Ti GPU, which
takes ∼15 minutes for MNIST-trained NNs ( wgA - wgC , wgI - wgK ), ∼5
hours for ImageNet-trained NNs ( wgG ), ∼3 hours for each of
the remaining target NNs. The offline training only needs
to be conducted once. During the online attack, whenever
the target NN is taking an input x, attackers can log a
ciphertext side-channel trace c and feed it to CIPHERSTEAL.
CIPHERSTEAL will subsequently recover x, which takes less
than one second for ∼100 NN inputs.
Runtimes. In line with Sec. 2.1, NNs running in both
interpreter-based frameworks and executable forms are eval-

uated. We consider two most popular frameworks, PyTorch
(version 2.0) and TensorFlow (version 2.13). We also con-
sider the two most popular NN compilers, TVM (version
0.12) and Glow (the commit 2dcde3f).

Execution Phases. We consider the following three different
execution phases of NNs.
Inference: Feature Extraction. The inference phase of an
NN only has forward propagation (FP). Therefore, we study
if ciphertext side-channel leakage exists in the computations
of common NN operations such as convolution, pooling, and
layout transforms. We evaluate the inference phase of both
interpreter-based frameworks and executables given their
different computational paradigms.
Training: Gradient Computation. The training phase con-
sists of an FP followed by a backward propagation
(BP), which performs gradient computation. Currently, only
interpretation-based frameworks support BP. Thus, we study
the additional leakage of the gradient computations in BP
of PyTorch and TensorFlow.
Fine-Tuning: Updated Weights. NNs can be fine-tuned
(i.e., slightly trained) after being deployed in TEEs due to
security hardening (e.g., NN slicing [99, 98]). As a result,
the weights of the NN will be updated, and the patterns of
ciphertext side-channel collisions (which are jointly decided
by NN weights and inputs) will be accordingly changed.
Since attackers may be unaware of the fine-tuning and the
query (during offline profiling) is conducted over the initially
deployed NN, we study whether the input recovery applies
if the target NN updates its weights.

Evaluation Metrics. As discussed in Sec. 3, NN inputs play
distinct roles (e.g., user’s privacy, or NN owner’s intellec-
tual properties) in different execution phases. Therefore, we
jointly use three metrics to evaluate the recovered inputs
from different aspects.
Prediction Consistency (PC). Since input information re-
lated to the prediction is critical (e.g., the disease in a medi-
cal image), we evaluate if a recovered input can result in the
same prediction as the ground truth input when fed into the
target NN. Because an NN’s output is chosen from a pre-
defined set of predictions, the baseline of classification tasks
is 1/#Classes. For regression tasks ( wgD , wgG , wgM in Table 2),
since NN outputs are vectors of continuous values, we check
if the recovered input has a smaller Cosine distance with its
ground truth input than one randomly selected input. Thus,
the baseline of PC for regression tasks is 50%.
Training Consistency (TC). Training inputs further decide
the functionality of the target NN. Thus, we also evaluate,
when a new surrogate NN is trained using the recovered
training inputs, whether it has consistent functionality with
the target NN. Following TEE’s protection, we annotate
recovered training inputs using the predicted labels (w/o
confidences) when querying the target NN with them. The
PC is measured as the percentage of user test inputs for
which the newly trained surrogate NN has the same predic-
tion as the target NN. The baseline of TC is the same as PC:
1/#Classes for classification and 50% for regression.



TABLE 2. STUDIED NNS AND DATASETS FOR VARIOUS TASKS UNDER DIFFERENT ATTACKER’S KNOWLEDGE. MARKERS wgA - wgK ARE CONSISTENTLY
USED IN THE REST OF THIS PAPER TO EASE FINDING THE SETUPS.

Exp. NN Dataset Task Usage Input Domain Logging ToolID Owner/User AttackerwgA
LeNet [41] MNIST [13] Classification Digit recognition

Digit 0-9 FK: Digit 0-9

Emulated
SEV-Step∗

wgB Digit 0-9 PK: Digit 0-4wgC Digit 0-4 ZK: Digit 5-9wgD FaceNet [68] CelebA [52] Regression Face recognition Face Photos ZK: Face photos
of other identitieswgE MobileNet [29] Chest X-ray [81] Classification Disease diagnosis 14 Diseases ZK: BenignwgF PK: 7 DiseaseswgG ResNet [24] ImageNet [12] Regression Image compression 100 classes FK: 100 classes

in ImageNet in ImageNetwgH ConvLSTM [71] KTH Actions [69] Classification Video understanding 6 Actions FK: 6 Actions†wgI
ViT [15] MNIST [13] Classification Digit recognition

Digit 0-9 FK: Digit 0-9

CipherLeak

wgJ Digit 0-9 PK: Digit 0-4wgK Digit 0-4 ZK: Digit 5-9wgL ViT Chest X-ray [81] Classification Disease diagnosis 14 Diseases PK: 7 DiseaseswgM ViT CelebA [52] Regression Face recognition Face Photos ZK: Face photos
of other identities

* We emulate SEV-Step using Intel Pin [53] due to the incompatibility issue; see details in Sec. 6.
† In the setup of wgH , the human IDs of attacker’s videos and owner’s/user’s videos do not overlap.

Similarity (SIM). Besides the distinct roles of inputs in
NNs under different contexts, we also conduct a similarity
evaluation exclusively on each recovered input. We use the
LPIPS [96] as the similarity metric given its high expres-
siveness of capturing image semantics. For each recovered
input, we use the ground truth NN input and M−1 randomly
selected (different) NN inputs to construct a candidate set.
We then compute all candidates’ similarities with the recov-
ered input. To assess the recovered information beyond the
input’s label (as already evaluated via PC), all candidates are
from the same class of the ground truth input. Results are
reported as the percentage of recovered inputs whose ground
truth inputs are among the top-K similar candidates. To
reduce randomness, we repeat the similarity evaluation five
times and report the average results in Sec. 7. We set K = 1
and M = 100. Thus, the baseline of SIM is 1/100 = 1%.
Logging Side Channels. Two mature logging tools have
been proposed by previous works to collect ciphertext side
channels: CipherLeak [47] and SEV-Step [44, 88]. In
short, CipherLeak only logs ciphertexts of last writes in
a memory page, and checks page-wise ciphertext collisions.
SEV-Step, in contrast, is finer-grained to track each in-
struction’s memory write and record ciphertext collisions
between instructions. Therefore, we use SEV-Step to log
ciphertext side channels from (classical) moderately sized
NNs, and employ CipherLeak for larger NNs (i.e., ViT, as
indicated in Table 2) where using SEV-Step is too costly.

We follow the default configurations of CipherLeak.
When configuring SEV-Step in our experiments, we found
that it is based on Linux kernel 5.14 which is outdated and
incompatible with the latest SEV-SNP firmware (version
1.55). This poses a conflict since the latest firmware is
required to launch a SEV-SNP guest VM to run the target
NNs. Porting SEV-Step to newer kernel versions requires
considerable manual effort and is impractical on our end.
We have contacted developers of SEV-Step for help; by
the time of submission, the upgrade is still in progress.

Thus, we mimic SEV-Step by using Intel Pin [53], an
instrumentation tool, to record each instruction’s memory

write in TEE-shielded NNs. Our experience on SEV-Step
shows that its outputs are “clean” and precise to track each
memory write, and our logging results using SEV-Step
and Pin are identical on programs currently supported by
SEV-Step. However, since SEV-Step is timer-based, it
may neglect memory writes occurred during a time interval.
We therefore also benchmark our input recovery towards this
impact. Overall, our input recovery is promising even when
63 of every 64 memory writes are unrecorded; see Sec. 7.3.

7. Evaluation

We consider four research questions (RQs). RQ1 studies
the leakage sites and attack surfaces under various settings.
RQ2 assesses recovering complex and diverse NN inputs.
RQ3 evaluates how our input recovery is affected by differ-
ent ciphertext side channels. RQ4 demonstrates NN attacks
(mentioned in Sec. 4.1) enhanced by our results.

7.1. RQ1: Leakage Sites and Attack Surface

We first analyze how the vulnerable functions distribute
among different NN executables and interpreters. We then
show the recovery results w.r.t. different settings. To ease
the setup of controlled experiments, we focus on MNIST
cases in this section and mainly discuss the prediction and
training consistency. Similarity results and other input data
and formats are given in Sec. 7.2.

TABLE 3. VULNERABLE MODULES AND KEYWORDS OF SAMPLE
FUNCTIONS. MORE CASES ARE PROVIDED IN OUR ARTIFACT [1].

Runtime Module Example Keywords

PyTorch Conv/Matrix/Kernel conv , bmm
Auto-grad autograd

TensorFlow GEMM sgemm
gemm

TVM Layout Transformation layout transform
Each layer fused

Glow Each layer conv2d f 3
matmul f 21



7.1.1 Vulnerable Modules
Due to the constant-time computations of NNs (i.e.,

the accessed memory addresses of NN computations are
fixed), localizing vulnerable modules that have ciphertext
side-channel leakage in NNs is straightforward. Similar to
the trace differentiation in existing side-channel detection
works [83, 85], we can simply check if the ciphertext
collisions of each address change with inputs.

1
2
3
4
5
6
7
8
9

; [bias]: bias
; [addr1]: Conv result
; [addr2]: zero-initialized
; xmm4: 0
movss xmm1, dword ptr [bias]
movss xmm3, dword ptr [addr1]
addss xmm3, xmm1
maxss xmm3, xmm4
movss dword ptr [addr2], xmm3

(c) Fused Conv & ReLU (TVM).

1
2
3

; [addr2]: zero-initialized
movss xmm0, dword ptr [addr1] 
movss dword ptr [addr2], xmm0

(b) Layout transformation (TVM).

1
2
3
4

; xmm2: 0, [addr]: zero-initialized
vaddss xmm3, xmm3, dword ptr [bias]
vmaxss xmm3, xmm3, xmm2
vmovss dword ptr [addr], xmm3

(a) ReLU operation (Glow).

Figure 4. Code patterns in Glow and TVM executables.

Executables. Table 3 summarizes our localized vulnerable
modules. In compiled NN executables, each NN layer is
implemented as a standalone function. For executables gen-
erated by Glow, we find that almost all layers have cipher-
text side-channel leakages. We analyze all leakage-incurring
instructions in executables and attribute these leakages to
the compiled activation and pooling functions. Activation
and pooling are non-linear functions converting continuous
values into a smaller range or discrete ones. Indeed, an NN’s
intelligence is based on its non-linearity. Fig. 4(a) shows
an example of ReLU(x) = max(0, x) in Glow-emitted
executables, which writes the results into the output memory
region (i.e., addr in Fig. 4(a)). However, since the output
region is zero-initialized, when a negative value is fed into
ReLU, the output 0 written to the output region will trigger
an observable memory ciphertext collision. Note that such
leakage instructions are repeatedly called in loops of matrix
computations; thus even a single leakage point can reveal a
large amount of input information.

Differently, while similar operations (activation func-
tions, pooling) exist in executables compiled by TVM, we
do not observe pervasive leakage sites as in Glow executa-
bles. Note that multiple operators in the target NN may
be optimized as one function by NN compilers (e.g., via
operator fusion [11]). As shown in Fig. 4(c), a ReLU is
fused into its preceding Conv layer. In that case, the results
of Conv operations (which have fewer zeros) are stored in
the output memory region; thus, collisions between ReLU’s
output zeros and the zero-initialized memory are largely
reduced. Nevertheless, we find that the layout transformation
modules of TVM contribute to many ciphertext collisions.
The zeros from ReLU still exist in the consequent computa-
tion. As shown in Fig. 4(b), whenever these zeros are moved
to a zero-initialized memory region (i.e., addr2), which
happens frequently due to memory layout optimizations,
ciphertext collisions still occur.
Interpreter Frameworks. PyTorch and TensorFlow have
leakages in similar modules. In particular, for PyTorch, most
ciphertext collisions occur in the convolution, matrix, and
kernel computation modules (e.g., conv-, kernel-, and

bmm-related functions). During BP, the auto-grad modules
also have ciphertext side-channel leakage. Similar modules
in TensorFlow, which are implemented via GEMM (i.e.,
general matrix multiply) functions, also induce leakages.

Due to the just-in-time (JIT) compilation paradigm of
PyTorch and TensorFlow, NN layers/modules are actively
constructed via primitive operators when the NN is running.
We notice that primitive operators, such as sum, copy,
etc., induce considerable ciphertext collisions, leading to
pervasive leakage sites. After investigating the patterns of
ciphertext collisions, we find that the root cause of leakages
in interpreters is similar to that in executables: the non-linear
functions map floating-point values to a smaller range or
fixed ones, greatly increasing the possibility of collisions.

Overall, the convolution modules are popular in classical
NNs. Matrix multiplication functions like bmm are building
blocks of fully connected layers and self-attention modules
in Transformer-based NNs. Similarly, kernel computation is
extensively used in max-pooling, average-pooling modules,
etc. These modules exist in nearly all modern NNs, indicat-
ing the severity and the pervasiveness of the attack surface.

7.1.2 Attack Surfaces under Various Scenarios
Setup. This section presents input recovery towards our
localized modules in Sec. 7.1.1 and studies how the results
are affected by different attack scenarios. For the FP of
PyTorch and TensorFlow, since most NN layers share the
same primitive operators, we do not observe notable differ-
ences due to the choice of the target primitive operator. For
Pytorch BP, we choose auto-grad functions to study BP’s
specific leakage. In TensorFlow, because both FP and BP
adopt GEMM functions, to specifically study BP’s leakage,
we choose GEMM functions that are not involved in FP.

In executables generated by TVM and Glow, NN layers
are implemented as standalone functions. For Glow executa-
bles, this section reports results on functions derived from
deeper layers. Since layers at different depths contribute dif-
ferently to the NN’s predictions [95, 18], we further evaluate
how the depths of layers affect the input recovery in Sec. 7.3.
For TVM executables, we focus on layout transformation
functions which primarily induce the leakage.

Table 4 presents our results. Below, we analyze them
from several aspects and summarize eight key findings.
Knowledge of Input Domain. As in Table 4, the attack
results can be improved with more knowledge of the input
domain. Note that for ZK cases, the target NN performs 5-
class classification, whereas the NN classifies 10 classes in
PK and FK cases. Although the PC and TC results of ZK
are comparable to PK in some settings, PK cases should
have better results. Overall, our attack achieves encouraging
results even in PK and ZK settings. To steal the target
NN’s functionality, previous attacks (even when the predic-
tion confidences are available) are “upper-bounded” by the
knowledge of input domain. Specifically, attackers only steal
the target NN’s partial functionality on their known input
domain. E.g., if attackers only have digit 1, their own NN
trained with queried predictions can only predict 1. That
is, query-based attacks at most achieve 50% and 0% TC in



TABLE 4. RECOVERY RESULTS FOR STUDYING ATTACK SURFACES. PC AND TC DENOTE PREDICTION AND TRAINING CONSISTENCY.

Runtime
Training Input User Test Input

Runtime
Training Input User Test Input

Forward Backward Forward Fine-Tuning Forward Backward Forward Fine-Tuning
PC TC PC TC PC PC PC TC PC TC PC PCwgA FK

TVM
97.18% 98.13% N/A N/A 97.33% 97.18%

PyTorch
82.08% 97.82% 40.37% 68.07% 66.83% 70.67%wgB PK 90.90% 98.17% N/A N/A 90.62% 90.71% 70.57% 96.98% 30.35% 68.07% 60.03% 60.15%wgC ZK 96.81% 99.65% N/A N/A 97.60% 97.66% 75.14% 99.55% 39.61% 76.70% 63.31% 68.52%wgA FK

Glow
98.20% 98.28% N/A N/A 97.88% 97.87%

TensorFlow
70.45% 89.61% 55.14% 97.26% 60.45% 60.40%wgB PK 95.65% 98.26% N/A N/A 95.33% 95.33% 61.03% 87.87% 45.36% 96.66% 51.22% 51.41%wgC ZK 97.96% 99.68% N/A N/A 98.11% 98.40% 69.50% 81.86% 49.33% 96.71% 52.23% 59.01%

our PK and ZK settings, respectively. In contrast, xh1 our
recovered inputs can steal the NN functionality with more
than 90% TC even in the ZK cases.
Fine-Tuning. We also study if the input recovery still ap-
plies after weights of the target NN have been fine-tuned (as
mentioned in Sec. 6). Compared with the initially deployed
NNs (which are queried during the offline preparation), these
fine-tuned NNs have 79.6% (on average) weights changed.

As shown in the 8th and last columns of Table 4, our
input recovery is not affected in all cases. Note that the
internal decision logics of the fine-tuned NN remain un-
changed despite that weight values are updated (otherwise,
the fine-tuning failed). Thus, we infer that the patterns,
which exist in the ciphertext side channels to facilitate
recovering NN inputs, primarily depend on the decision
logic. This is reasonable since an NN’s decision logics,
to some extent, decide what information to be extracted
from inputs. However, we find that our input recovery is
inapplicable to new NNs that are different from the NN we
queried offline. Therefore, we conclude that xh2 updating NN
weights (due to hardening) does not affect our input recovery
unless the target NN is replaced with a new different one.
Interpreter vs. Executable. In all settings, the input recov-
ery has better results on NN executables than NNs running
in interpreters. After investigating the logged ciphertext side
channels, we find more ciphertext collisions occur in NN
executables. In fact, NN executables are highly optimized;
their memory accesses are more compact, which increases
the chance of ciphertext collisions. Also, NN interpreters
have non-determinism in some functions (e.g., the OpenMP
multi-threading [76] in PyTorch), such that some ciphertext
collisions are due to randomness, which negatively impacts
the recovery. Thus, we infer that xh3 optimizations in NN
compilers have introduced substantially new ciphertext side-
channel leakage of NN inputs.
Training vs. Test Inputs. For PyTorch and TensorFlow,
the recovered training inputs have higher PC than user
test inputs. Note that existing works find that NNs can
memorize some training inputs [72, 8], we suspect that
such memorization eases recovering training inputs. This
gap may not be obvious in cases of higher leakage (e.g., in
executables), but is enlarged when the leaked information
is slimmer (e.g., in interpreters). To conclude, xh4 compared
with test inputs, training inputs are more likely to be leaked
via ciphertext side channels.
Functionality vs. Input. The recovered training inputs
usually have higher TC than PC in Table 4. We interpret
the result from two aspects. First, our technique ensures

the realism of recovered inputs by modeling p(x); see
Sec. 5. Despite that some recovered inputs have inconsistent
predictions with ground truth inputs, they are still valid
and meaningful NN inputs. This highlights the merit of our
design considerations. Second, PC may have more restrictive
requirements: to retain the prediction, full details of the
input should be recovered. Nevertheless, even if some details
are missed in the recovered input (thus making the NN
change its prediction), the recovered input is still useful
as one training sample because it reflects the target NN’s
decision logics on the partially recovered image details.
Therefore, we conclude that xh5 NN functionality has more
severe leakage via ciphertext side channels.
FP (Forward) vs. BP (Backward). For both PC and TC,
inputs recovered from the FP phase have better results. Intu-
itively, FP primarily extracts features from inputs, whereas
BP computes gradients which reflect the NN’s decision
logics. Thus, the leakage in FP is more informative to
recover NN inputs. We conclude that xh6 NN input leakage
during FP is more informative than BP.
PyTorch vs. TensorFlow. As in Table 4, attack results over
PyTorch and TensorFlow exhibit varying trends on FP and
BP. We discuss them below.
Forward: Memory Usage. Compared with TensorFlow, in-
puts recovered from PyTorch’s FP have better PC and TC.
By cross-comparing their FP, our experiments show that Py-
Torch consumes more memory. Accordingly, more memory
writes occur, increasing the chance of ciphertext collisions.
In sum, xh7 PyTorch has more leakage than TensorFlow
during FP due to its higher memory usage.
Backward: Static vs. Dynamic Computational Graph. Dif-
ferent from the FP, inputs recovered during TensorFlow’s BP
have higher PC and TC. Also, by cross-comparing the gaps
between FP’s and BP’s results in PyTorch and TensorFlow,
PyTorch cases have larger gaps. Note that PyTorch maintains
a dynamic computational graph on the fly, and it deletes the
graph when back-propagating gradients to save computing
resources. Thus, with the graph and historical computation
results gradually deleted, ciphertext becomes less likely to
trigger collision (and leakage) in BP. In contrast, Tensor-
Flow maintains a static computational graph during runtime
which is fixed after initialization. Thus, the results indicate
that xh8 the static computational graph in TensorFlow in-
duces more leakage during the BP.

7.2. RQ2: Complex and Diverse Inputs

This section evaluates our input recovery for more com-
plex NN inputs. We focus on the FP (forward) since it is



(a) Digit images under FK setting.

Recovered Ground truth

(b) Digit images under PK setting.

(c) Digit images under ZK setting.

Recovered Ground truth Recovered Ground truth

(e) Face photo cases. (f) Chest X-ray image cases.

Recovered Ground truth

(d) ImageNet cases.

Figure 5. Examples of recovered images and ground truth. For the ZK case in Fig. 5(c), the target NN only processes digits 0-4. Recovered videos and
more image examples are provided in [1]. Failure cases (whose frequency is very low) and their root causes are discussed in Appx. B.

involved during both inference and training. We consider
Glow and PyTorch as the representative NN compilers and
interpreters in this section.
Qualitative Examples. Fig. 5 presents examples of recov-
ered input images and their ground truth. The recovered
digits are almost identical to the ground truth, and CIPHER-
STEAL is able to recover digits 0-4 with only digits 5-
9 under the PK and ZK cases. In cases of face photos,
these people’s identities are accurately recovered, despite
that attackers do not have face photos of the same identities.
In addition, facial attributes, such as gender, skin color,
eye status, expressions, orientations, etc., are also highly
consistent between recovered face photos and ground truth.
The recovered chest X-ray images also match the size,
number, and position of lung lobes and ribs in the ground
truth inputs. Recovered videos are displayed on our artifact
website [1]. Overall, the recovered videos are smooth, and
each frame matches that in the ground truth videos. The
person (which is unknown) and the performed action in each
video are also precisely recovered.

TABLE 5. ATTACK RESULTS OF OTHER INPUT FORMATS. PC AND TC
DENOTE PREDICTION CONSISTENCY AND TRAINING CONSISTENCY.

Input Training Input User Test Input
PC TC PC

Glow

wgD Face photos ZK 98.6% 98.8% 98.3%wgE Chest X-ray images ZK 78.2% 90.4% 78.1%wgF Chest X-ray images PK 92.5% 94.3% 90.1%wgG 100-class images FK 95.4% 96.7% 94.7%wgH Human action videos FK 50.8% 79.0% 43.4%

PyTorch

wgD Face photos ZK 88.0% 96.8% 82.4%wgE Chest X-ray images ZK 68.7% 82.1% 68.8%wgF Chest X-ray images PK 78.9% 90.4% 77.1%wgG 100-class images FK 89.3% 91.6% 86.5%wgH Human action videos FK 34.1% 51.1% 33.9%

TABLE 6. SIMILARITY EVALUATION (SIM). BASELINE IS 1%.

Input Training Input User Test Input
Glow PyTorch Glow PyTorchwgA MNIST FK 98.5% 85.3% 98.3% 69.3%wgB MNIST PK 95.9% 76.7% 96.5% 63.8%wgC MNIST ZK 98.2% 81.8% 97.9% 65.0%wgD Face photos ZK 88.2% 70.7% 87.3% 70.1%wgE Chest X-ray images ZK 67.7% 58.8% 66.5% 55.4%wgF Chest X-ray images PK 85.6% 66.4% 84.5% 63.9%wgG 100-class images FK 92.1% 82.4% 92.7% 81.9%wgH Human action videos FK 51.1% 38.1% 51.5% 37.2%

Quantitative Analysis. As reported in Table 5, we achieve
encouraging prediction consistency (PC) and training con-
sistency (TC) results for diverse and more complex input
formats, indicating that our recovered inputs are capable of
stealing the predictions and functionalities of the target NNs.
Table 6 presents results of the similarity evaluation (SIM).
Note that our similarity evaluations are conducted among
inputs of the same class, these high results (compared with
the 1% baseline) demonstrate that rich details in each image
are successfully recovered. Previous techniques only apply
to black-and-white images such as digit images in MNIST,
and the recovered digits lose details [82]. CIPHERSTEAL,
in contrast, is not limited to specific input formats: our
technique and the promising results highlight the severity
of ciphertext side-channel leakage in TEE-shielded NNs.

Overall, results of chest X-ray images and face photos
reflect the precision of CIPHERSTEAL and fine-grained de-
tails leaked: IDs/disease information can be recovered from
ciphertext side channels when the attacker does not know
the face ID or has only benign chest X-ray images. Besides,
recovering images of 100 classes benchmarks the scalability
of CIPHERSTEAL, i.e., simultaneously handling all of them.
Note that previous attacks towards data processing modules
in NNs can only handle images of one class each time [94].
Moreover, recovering videos demonstrates the generalizabil-
ity of CIPHERSTEAL since videos are sequential data and
are processed by NNs having special recurrent structures;
as clarified in Sec. 5.2, recovering videos is conceptually
similar to, but technically harder than recovering text.

7.3. RQ3: Side-Channel Observations

This section evaluates how different ciphertext side-
channel observations and noises affect our input recovery.
Logging with CipherLeak. Besides our emulated
SEV-Step, we also evaluate CIPHERSTEAL by logging
ciphertext collisions with CipherLeak. Results are given
in Table 7. Since CipherLeak only records the last writes
at each memory page and checks ciphertext collisions when
different pages are accessed, it is not surprising that the
results are relatively lower than using SEV-Step. Never-
theless, the results are still promising, and remain largely
higher than the baselines.



TABLE 7. INPUT RECOVERY RESULTS OF USING CIPHERLEAK .

Input Training Input User Test Input
PC TC SIM PC SIM

Glow

wgI MNIST FK 67.2% 85.4% 38.8% 67.1% 37.9%wgJ MNIST PK 58.7% 80.2% 37.6% 57.8% 37.7%wgK MNIST ZK 66.1% 84.4% 38.5% 64.3% 38.1%wgL Chest PK 52.6% 77.3% 26.7% 52.2% 26.3%wgM Face ZK 78.5% 86.8% 50.5% 77.7% 51.2%

PyTorch

wgI MNIST FK 66.7% 82.8% 37.6% 65.6% 38.0%wgJ MNIST PK 53.4% 79.7% 36.1% 53.2% 35.8%wgK MNIST ZK 64.3% 81.5% 38.2% 63.2% 37.5%wgL Chest PK 50.3% 76.7% 25.9% 50.6% 26.1%wgM Face ZK 73.1% 84.9% 49.4% 72.8% 49.3%

We note that the results over interpreters and executables
are very close. In Sec. 7.1.2, we reveal that optimizations in
NN executables enlarge the leakage due to more compact
memory accesses. However, the enlarged leakage is not
significant when using CipherLeak. Note that optimiza-
tions in NN executables primarily fuse adjacent operators,
such that their memory writes are more likely to the access
same addresses. However, the accessed memory addresses of
adjacent operators are presumably located on the same page,
whose collisions are likely not logged as CipherLeak
only records the last writes that occurred on the same page.

TABLE 8. EVALUATIONS OF DIFFERENT NN LAYERS AND
GRANULARITIES OF SEV-STEP .

Layer Input
Training Input User Test Input

PC TC PC
T = 16 T = 64 T = 16 T = 64 T = 16 T = 64

Shallow
wgA MNIST FK 92.4% 83.4% 98.1% 98.1% 92.9% 83.9%wgB MNIST PK 73.9% 58.6% 97.9% 97.8% 74.9% 58.4%wgC MNIST ZK 87.4% 71.3% 99.4% 99.6% 87.7% 73.1%

Deep
wgA MNIST FK 90.7% 59.1% 98.2% 98.2% 90.9% 60.3%wgB MNIST PK 69.1% 46.7% 97.5% 97.2% 68.9% 46.5%wgC MNIST ZK 85.0% 47.3% 99.7% 98.9% 86.1% 46.7%

Different Granularity of SEV-Step. While ciphertext
side channels can be logged in a single-step granularity via
SEV-Step, multiple instructions could be executed during
the given APIC timer interval [88], such that some memory
writes are periodically missed. To benchmark such impacts
on CIPHERSTEAL, we consider emulating SEV-Step with
different granularity T , i.e., only recording every T -th mem-
ory write. We consider T = 16 and 64.

As in Table 8, even when T = 64 (i.e., 63 records
are missed among every 64 memory writes), the PC is still
promising, e.g., over 70% in the ZK cases of shallow layer,
whose baseline is 20%. Differently, the TC is almost not
affected by the granularity. This observation is consistent
with our finding xh5 in Sec. 7.1.2: despite leading to differ-
ent predictions, recovered inputs are still valid and useful
training samples since we ensure their realism.
Picking Leakage Sites. Different from interpreters where
different layers are constructed via primitive operators, Glow
executables implement each NN layer as one standalone
function. Considering that different layers (i.e., shallow vs.
deep) often contribute differently to NN predictions [95,
6], we study how the input recovery is affected by the
choice of layers. As shown in Table 8, better input recovery
is achieved on shallow layers. This is reasonable because
NNs propagate inputs from shallow to deep layers, with
more abstracted features gradually extracted. Hence, shallow
layers should retain more information about NN inputs.

7.4. RQ4: Enabled Attacks
Training consistency (TC) results presented in previous

sections show that our input recovery can largely enhance
attacks that steal NN functionality. This section evaluates
how our results bring white-box adversarial examples (AEs)
to fool NN predictions. As mentioned in Sec. 4.1, we train
a surrogate NN using the recovered training inputs. We then
generate AEs over the surrogate NN and use these AEs to
manipulate or downgrade the target NN’s predictions.
Setup & Baseline. The manipulation attack forces the
victim NNs to always predict “0” or “benign” for digit
recognition ( wgA - wgC ) and chest X-ray image diagnosis ( wgE ),
respectively. Our attack is compared with one state-of-the-
art black-box adversarial attack, square attacks [3], which is
directly applied to target NNs. We use PGD [5] to generate
white-box AEs on surrogate NNs. We configure both algo-
rithms to query its attacked NN (the target NN or surrogate
NN) at most 20 times and the adversarial perturbations are
bounded with the maximum `∞-norm of 0.3. In each setting,
we generate 2,000 AEs for the attack.

TABLE 9. EVALUATION OF ENABLED ATTACKS.

Input Downgrade Manipulation
Black-Box Ours Black-Box OurswgA MNIST FK 0 37.8% 0 32.0%wgB MNIST PK 0 33.7% 0 29.7%wgC MNIST ZK 0 21.7% 0 22.2%wgE Chest ZK 18.85% 97.5% 0 12.0%

Results. Table 9 presents attack success rates. Black-box
AEs are less effective and never succeed in 7 over 8 settings.
Our attack, by leveraging the adversarial vulnerabilities
inherited from training data, can successfully downgrade
and manipulate the target NN’s prediction with around 30%
success rate for digit recognition. Downgrading chest X-
ray diagnosis (the only successful case of black-box AEs;
our attack has 97% success rate) is significantly easier
than enforcing it to predict “benign” (12% success rate by
our attack). To explain, the diagnosis relies on fine-grained
details in X-ray images, and adding adversarial perturbations
can easily break those details to mislead the prediction.
Nevertheless, manipulating the prediction to benign requires
hiding all disease-related details which is more challenging.

Our attack is also more efficient; it only takes half of the
time spent in the black-box attack (63s vs. 122s). Training a
surrogate NN takes about ∼170s for MNIST and ∼20 min
for X-ray images; however, this is a one-time effort.

8. Discussions and Future Works

Countermeasures. CIPHERSTEAL, for the first time, en-
ables recovering high-quality inputs from TEE-shielded
NNs. The recovered inputs can be further used to steal
NN functionality and generate more effective adversarial
examples. As a result, the adoption of CIPHERSTEAL may
raise potential privacy and security concerns, especially in
the context of TEEs. Recent work in repairing ciphertext
side channels [86] may not be directly applicable to our at-
tack, given that [86] primarily fixes vulnerable cryptographic



code patterns that do not exist in NNs. [44] advocates to
achieve non-deterministic ciphertexts in TEEs via VMSA
randomization, and [87] proposes to obfuscate the memory
access patterns or ciphertexts via oblivious RAMs. How-
ever, the randomization/obfuscation may bring considerable
performance overheads.

Having that stated, we believe that there are several
promising directions to mitigate our attack. First, from the
algorithmic perspective, we can specifically design random-
ization/obfuscation schemes for NNs following the prin-
ciples of [44, 87]. Unlike traditional software, the execu-
tions of NNs are essentially matrix computations, which
are resilient to non-adversarial noise in intermediate com-
putations. Since the collisions are induced by writing the
same intermediate results to memory, negligible noise can
be injected into NN’s intermediate outputs on the fly to
randomize the generated ciphertext. Such randomization
should yield a low cost, and the key obstacle is finding
the “sweet spot” between NN accuracy and the noise level.
Existing profiling-based obfuscation techniques [26] may be
a good starting point.

In addition, inspired by our findings in Sec. 7.1, the
following software- and system-level countermeasures are
also highly feasible. For runtime implementation, instead of
directly writing to memory, using registers to hold as many
intermediate values as possible should avoid many ciphertext
collisions. For optimizations in NN computation, motivated
by the TVM case in Fig. 4, we expect to leverage operator
fusion to reduce memory writes for neighboring operators.
Moreover, as we observe many collisions between written
zeros and zero-initialized memory, we advocate initializing
unused memory regions with non-deterministic values to
reduce the frequency of ciphertext collisions.
Detecting Ciphertext Side-Channel Leakage. As intro-
duced in Sec. 7.1.1, due to the constant-time computations
of NNs, detecting NN modules vulnerable to ciphertext
side channels is straightforward via trace differentiation.
However, this approach is inaccurate for programs of varied
data/control flows, where different ciphertext side-channel
traces may be unaligned. The size of recent NNs is growing
exponentially and optimizations are accordingly proposed
for NN computations. For instance, dynamic control flows
have been implemented in recent large NNs [66]. NN com-
pilers have also supported compiling dynamic computation
graphs [10]. Therefore, it is high time to propose scalable
and more advanced ciphertext side-channel detection tech-
niques for NNs.

CipherH [14] detects ciphertext side-channel leakages in
cryptographic software and is able to handle varied control
and data flows. However, it is inapplicable to NNs due to its
heavy program analysis techniques. Considering that side-
channel detection has been extensively studied for cache
side channels [79, 78], we foresee related techniques (e.g.,
trace alignment [83], lengthy trace conversion [93], quanti-
tative analysis [85, 93], etc.) can be adapted for ciphertext
side channels in NNs; the primary challenge should be the
engineering efforts on dealing with the Python interface in
some NN runtimes (e.g., PyTorch).

Exploiting New Side-Channel Leakage. While this pa-
per has illustrated the threat that untrusted hosts pose to
user privacy, it is also vital to investigate the threat from
other adversaries like malicious users. Since a malicious
user is unprivileged, the attack surface mostly lies in the
exploitation of user-space micro-architectural side channels.
For instance, Yuan et al. [94] have shown that, due to the
shared CPU caches among users in MLaaS, a malicious user
can leverage cache side channels in data processing libraries
(e.g., libjpeg, ffmpeg) to steal other user’s inputs.
However, this threat can be mitigated by locally processing
inputs without using online data processing libraries.

Despite that NN’s computations are mostly constant-
time (user inputs provided to NNs are therefore free of
mainstream micro-architectural side channels), similar to
TEE’s implementation issue (i.e., the deterministic encryp-
tion) attacked in this paper, their practical implementations
in runtime environments may bring new exploitation op-
portunities. For instance, the distributed data-parallel com-
putations of modern NNs often implement data-dependent
optimizations, which may lead to input-dependent data flows
that are observable to malicious users. Exploiting new side
channels in NNs w.r.t. different adversaries should be a
promising research direction.
Extension of CIPHERSTEAL. As discussed in Sec. 4.1,
CIPHERSTEAL primarily focuses on the novel usage of
ciphertext side channels; the two key procedures in CI-
PHERSTEAL, information transformation and reconstruction,
are independent of specific characteristics of ciphertext side
channels and should be applicable to input recovery in other
contexts. Overall, extending CIPHERSTEAL to other NN
side channels that leak inputs (if identified in the future)
is straightforward: attackers only need to feed the collected
side-channel traces to CIPHERSTEAL for input recovery.

9. Conclusion

This paper demonstrates that ciphertext side channels
can be exploited to recover input data from TEE-shielded
NNs. We propose CIPHERSTEAL to address the information
loss and limited observation issues, and recover high-quality
inputs under varied knowledge of the victim. Comprehen-
sive evaluations show the superiority of CIPHERSTEAL in
recovering NN inputs and augmenting downstream attacks.
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traces as images for efficient side-channel analysis. In 2020 IEEE
International Symposium on Hardware Oriented Security and Trust
(HOST), pages 46–56. IEEE, 2020.

[26] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and M. Franz.
Profile-guided automated software diversity. In Proceedings of the
2013 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), pages 1–11. IEEE, 2013.

[27] S. Hong, M. Davinroy, Y. Kaya, S. N. Locke, I. Rackow, K. Kulda,
D. Dachman-Soled, and T. Dumitraş. Security analysis of deep
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Appendix A.
Configuration Suggestions of CIPHERSTEAL

As introduced in Sec. 5.2, the offline profiling of CI-
PHERSTEAL trains several neural networks. This section
provides suggestions for configuring CIPHERSTEAL.
Auto-Encoders. We implement both the transformation T
and the reconstruction’s inversion I as auto-encoders. Since
T maps side-channel traces to images (or video frames),
the auto-encoder of T consists of a side-channel trace
encoder and an image decoder. Similarly, the auto-encoder
of I, whose inputs and outputs are images, consists of
an image encoder and an image decoder. Following the
common practice [94], both image encoders and decoders
are implemented as convolutional neural networks. The side-
channel trace encoder is adopted from [94], which explores
the sparsity of side channels to support handling lengthy
(e.g., having millions of records) side-channel traces.
Loss Function L. The simplest loss function of images is
the mean square error (MSE), which works sufficiently well
for digit images in MNIST. However, since other complex
images (i.e., those evaluated in Sec. 7.2) have richer details
than digit images, we compute the loss in a multi-resolution
manner following [65]. In short, the multi-resolution com-
putation first down-samples images into multiple resolutions
(e.g., down-sampling 128 × 128 images into various sizes
of 64 × 64, 32 × 32, and 16 × 16) and computes the loss
value for each resolution. The final loss value is the average
of loss values at different resolutions.

Although the multi-resolution loss computation is more
accurate, it multiplies the computing cost. Therefore, we
suggest users of CIPHERSTEAL first adopt the default com-
putation of loss function; if the results are not satisfactory,
users can switch to the multi-resolution computation.
Transformation and Reconstruction. We find that not all
datasets evaluated in Sec. 7 require reconstructing the lost
information. For the MNIST dataset and digit recognition
NNs, we notice that full details of the digits are leaked in
ciphertext side channels, and only using the transformation
is sufficient to accurately recover different digits (see ex-
amples in Fig. 4). However, for all the remaining dataset
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(e.g., face photos, chest X-ray images, 100-class images
in ImageNet), the reconstruction is necessary; otherwise,
the recovered images will lose considerable details and are
usually unrecognizable. Overall, digit images in MNIST
have clean backgrounds and are distinguishable with only
black and white pixels; it is reasonable that ciphertext side
channels can reflect their details.
Generative Model G. To date, typical generative models in-
clude Generative Adversarial Networks (GANs), Variational
Auto-Encoders (VAEs), and Diffusion models. We have
explored using representative GANs, VAEs, and Diffusion
models, and found that GANs are the most effective in
reconstructing the lost information.

Despite that Diffusion models have shown better image
generation capabilities than GANs recently, the fundamental
difference between Diffusion models and GANs is that
each GAN has an accompanying discriminator, which helps
to check whether the generated images are valid. Since
optimizing the objective in Eq. 6 actively modifies the
generator’s inputs, the discriminator in GANs can supervise
the optimization process and limit the modification to en-
sure generating valid images. Diffusion models and VAEs,
in some cases, may generate invalid images, guiding the
follow-up optimization iterations to incorrect directions.

Regarding the choice of GANs, we suggest using Style-
GAN [36] for domain-specific cases like face photos and
chest X-ray images, and optimizing Eq. 6 can be conducted
following [65]. In case the input domain is very large (e.g.,
the ImageNet case), we suggest using BigGAN [7] and
following the regulations in [62] to optimize Eq. 6. Our
pre-trained GANs are provided in our artifact [1].

Appendix B.
Analysis of Failure Cases

To comprehensively understand the limitations of CI-
PHERSTEAL and the incapabilities of exploiting ciphertext
side channels on TEE-shielded NNs, this section analyzes
the failure cases in our input recovery. We manually in-
spected 500 recovered face photos. While most recovered
images are visually identical to the ground truth, we identify
the following four cases where the recovered face photos
largely deviate from the ground truth.

Recovered Ground truth

Figure 6. Failure cases in recovering images.

In the two cases shown in the first row of Fig. 6,
CIPHERSTEAL fails to recover the caps in the ground truth
images. In the remaining two cases in Fig. 6, the letters

in the ground truth images are not recovered. Note that
our attacked NNs perform face recognition, where the caps
and letters may be neglected when extracting facial fea-
tures. In addition, our information reconstruction leverages
the implicit constraints over image contents (see Sec. 3).
The caps (of diverse decorations) and letters are unusual
contents in face photos, as a result, they are unlikely to be
reconstructed by exploring constraints formed by common
facial attributes.

Having that said, these failure cases do not undermine
the threat of ciphertext side-channel leakage and the su-
periority of CIPHERSTEAL in recovering NN inputs. As
discussed in Sec. 3, the core incentive behind the input
recovery is stealing user secret and NN functionality. Details
such as caps and letters in face photos are often not user
privacy and usually do not decide the functionality of face
recognition. However, secret facial attributes are accurately
recovered by CIPHERSTEAL even in the cases in Fig. 6.

Appendix C.
Limitation and Potential Augmentation

As CIPHERSTEAL relies on constraints of image con-
tents to reconstruct the lost information in NN inputs (see
Sec. 3), its input recovery may be limited by the attacker’s
knowledge of the target input’s content (i.e., contents of the
attacker’s inputs and user’s inputs are expected to follow
the same “format”, as defined in Def. 2). For instance,
CIPHERSTEAL is unable to recover inputs whose contents
are completely different from attacker’s inputs (e.g., face vs.
chest X-ray images whose “input formats” are different).

Recovered Ground truth

Figure 7. Raccoon (a class not in ImageNet) images recovered using only
ImageNet images.

To further explore CIPHERSTEAL’s recovery capability
when facing inputs of distinct contents, we use ImageNet
images (as attacker’s inputs) to recover raccoon images (a
class not in ImageNet) following [62]; results are shown
in Fig. 7. Although contents in raccoon images are largely
distinct from all ImageNet images, some ImageNet images
(e.g., dog images) and raccoon images share similar content-
wise constraints (e.g., both dog and raccoon often have
fur, a tail, and multiple legs). This result sheds light on
expanding CIPHERSTEAL’s application scope beyond inputs
of the same “format”: the shared content-wise constraints
can be incorporated into CIPHERSTEAL to recover inputs
of distinct contents. Recent multi-modal large models (e.g.,
GPT-4V and LLaVA which accept inputs from an open set)
can effectively map diverse inputs into a unified embedding
space that captures content-wise similarity. To augment the
input recovery with them, CIPHERSTEAL can be employed
to transform/reconstruct the embeddings instead of the orig-
inal inputs; we leave this as future work.



Appendix D.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

D.1. Summary of Paper

The work shows how side-channel attacks can be used to
recover input data from TEE-shielded neural networks. The
authors use a two-step approach where partial information
is recovered using the ciphertext side channel, and then
reconstructed into a valid input from the given domain.

D.2. Scientific Contributions

• Identifies an Impactful Vulnerability.
• Provides a Valuable Step Forward in an Established Field.
• Establishes a New Research Direction.

D.3. Reasons for Acceptance

• The paper demonstrates the novel use of ciphertext side
channel information to reconstruct actual inputs to TEE-
protected NNs, highlighting a limitation of TEEs. It ex-
tends work on crypto key recovery, showing how side-
channel attacks can be mounted against low-entropy “soft
targets”. The work also contributes methods for recon-
structing data (image/video) using the partial data received
using the side channel attack.

• The program committee appreciated the work’s objectives,
the novelty of the attack target (neural network inputs),
the thorough evaluation, and the fact that the problem was
formally modeled.
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