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by
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ABSTRACT

Side channel analysis (SCA) investigates the unintended secret leakage in a system’s non-

functional characteristics such as execution time or memory access patterns. Given the

growing adoption of AI systems in security-critical and privacy-preserving applications,

this thesis comprehensively studies side channel leakages in infrastructures that underpin

the entire life cycle of modern AI systems, including data processing libraries, trusted

execution environments (TEEs), runtime interpreters, executables on edge devices, etc. It

also proposes highly practical solutions for SCA.

On the offensive side, this thesis demonstrates end-to-end attacks that recover user’s

inputs (i.e., the user’s privacy) and the underlying neural networks (i.e., the intellectual

property) of AI systems from various side channels. We first consider a non-privileged

co-process as the attacker and exploit cache side channels. Modern AI systems adopt

data processing libraries (e.g., Libjpeg, FFmpeg) to handle various formats of user inputs

like images and audios. Our work for the first time recovers such complex inputs from

these libraries’ cache side channels. Then, we consider untrusted hosts as adversaries.

While TEEs are widely employed to shield AI systems from malicious host platforms,
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our works exploit the ciphertext side channels in TEEs and reconstruct both inputs and

neural networks from TEE-shielded AI systems, breaking the security belief of TEEs. We

also propose the first unified recovery scheme for complex input data like images, audios,

text, videos, etc., and the first practical reconstruction technique for model weights of

real-world neural networks.

On the defensive side, this thesis localizes hundreds of new leakage sources in the

exploited systems. Prior works often adopt program analysis techniques to model leak-

age patterns, whose localization is leakage-specific and suffers from the scalability issue.

We recast the information leakage as a cooperative game among all leakage sources and

reduce the cost from exponential to nearly constant. Our work presents a generic localiza-

tion pipeline and supports analyzing production-size programs and AI infrastructures for

the first time. We systematically examine the leakage in AI runtime interpreters including

TensorFlow and PyTorch, and study how their different computation paradigms affect the

leakage. Our analysis also reveals that optimizations in AI compilers (e.g., TVM, Glow)

enlarge the leakage in compiled neural network executables.
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CHAPTER 1

INTRODUCTION

Security is the fundamental requirement for modern computer systems. Over the years,

security exploitation and defense have been playing a cat-and-mouse game, with tremen-

dous techniques continuously proposed and evolving. Among them, side channel leakage

stands out as one severe yet stealthy threat to computer security. In general, side channels

leak secrets via side effects and non-functional characteristics of a system’s execution. Un-

like typical security flaws that are induced by algorithmic defects, side channels denote

unintended secret leakage from the system’s physical activities and are often exploited

through the interplay between a system and the outer world.

Side channel analysis (SCA) is the process of analyzing secret leakage in an attacker’s

observed side channels, such as power consumption [207], electromagnetic radiation [169],

cache access [236], and memory activities [149], etc. A typical SCA covers two main as-

pects: 1) secret analysis and 2) leakage analysis. The secret analysis investigates how secrets

can be reconstructed from the observed side channels, while the leakage analysis exam-

ines how secrets are leaked through side channel observations. With the era of artificial

intelligence (AI) approaching, it is urgent to understand the security implications of side

channel leakage in AI systems. To this end, this thesis comprehensively studies the oppor-

tunities and challenges of SCA in infrastructures that span the entire life cycle of modern

AI systems, and also provides practical solutions.

1.1 AI Infrastructures and Secrets

Fig. 1.1 presents infrastructures in modern AI systems, including data processing libraries,

the underlying neural network, and the runtime environments for running the neural

network. Since the neural network relies on semantics in inputs (e.g., a face in a portrait

image) to make predictions, the AI system adopts data processing libraries like libjpeg

to handle user inputs in various format specifications (e.g., JPEG, PNG, etc.). The processed
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inputs are then represented as vectors or matrices, and taken by the neural network to

predict outputs. The prediction is performed as a sequence of matrix operations between

an input and the neural network’s weights.

The neural network can run in different runtime environments. The most popular

way is running neural networks in interpreter-based frameworks like TensorFlow [12]

and PyTorch [199]. Recently, neural networks are increasingly compiled into executables

by AI compilers, such as TVM [51] and Glow [210], for better performance across different

end devices. In cases of confidential computing (e.g., querying an untrusted AI service

provider, or deploying the AI system on an untrusted host), the whole system is often put

into Trusted Execution Environments (TEEs) to protect secrets [143, 125, 156].

Inputs

Image Audio Text Video

Neural
network

Trusted Execution Environments (TEEs)

Runtime
environments

Processed
inputs Predictions

Interpreter

Compiler

Data processing libraries

Host platforms

Owner

Multiple users

Secrets Protected by TEEs On the host platforms AI infrastructures

Figure 1.1: Illustration of the workflow, infrastructures, secrets, and participants in mod-
ern AI systems.

Secrets and Attacker’s Incentives

Two types of secrets are of interest in AI systems: 1) the input which denotes user’s private

data, and 2) the neural network which represents the intellectual property of the AI system’s

owner. In particular, since the intelligence of a neural network is encoded in its weights

and obtaining well-formed weights requires considerable (private) labeled data, extensive

computing resources, and human expertise for designing the training algorithm, this the-
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sis focuses on leakages of inputs and neural network weights in AI systems. In general,

attackers have the following incentives to steal the above secrets:

1. Spying User’s Privacy. Leaking inputs lead to privacy violations of users. For exam-

ple, the input image of an AI-based disease diagnosis system may contain sensitive

information about the user’s health condition. The input text of an AI assistant may

contain the user’s private conversations.

2. Copying Intellectual Property. Leaking neural network weights enables attackers to

clone the AI system’s functionality without training neural networks from scratch.

This significantly reduces the cost of developing AI systems and brings commercial

benefits to the attackers.

3. Enabling New Attacks. The recovered inputs help attackers scope possible inputs

of the AI system, while the recovered weights make the neural networks white-

box accessible to attackers. This information can be leveraged to launch attacks to

manipulate and collapse the AI system’s functionality.

1.2 Adversaries and Side Channel Leakage

As illustrated in Fig. 1.1, the real-world usage of AI systems involves three groups of

participants: ¨ multiple users, ≠ the owner of the AI system, and Æ the host machine

where the AI system deploys. Aligned to the two types of secrets mentioned in Sec. 1.1,

these groups may pose the following threats to the AI system:

¨ User: Input Leakage. When multiple users are using the same AI system (e.g.,

querying a cloud-based AI service), a malicious user may exploit the AI system to

infer other users’ private inputs.

≠ Owner: Input Leakage. When querying an AI system from an untrusted service

provider, users may expose their privacy (e.g., a chest X-ray image containing dis-

ease information) to the AI system’s owner.
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Æ Host: Neural Network Leakage. When deploying the AI system on an untrusted

host platform, the host may duplicate the underlying neural network to copy the AI

system’s intellectual properties.

In the scenario of ¨, the adversary is non-privileged and does not have access to the

AI system’s internals. Hence, the exploitable threat lies in the shared hardware resources

between the AI system and its co-process launched by the adversary. This thesis identi-

fies input leakage induced by cache side channels in the data processing libraries of AI

systems: since the cache is shared by the AI system and the adversary, the adversary can

record the accessed cache units when the data processing library is processing an input,

and leverages cache access patterns to recover the input.

In the context of ≠, the AI system’s owner also owns the host platform; in that sense,

both ≠ and Æ render privacy concerns from untrusted hosts. Given the high privilege of

the malicious host, the most mature and widely adopted (in both academia and industry)

mitigation is putting the whole AI system into Trusted Execution Environments (TEEs),

so that the AI system’s owner cannot view user’s inputs and the host cannot duplicate

neural network’s weights from the deployed AI system. However, despite that TEEs have

delivered wide security belief via memory encryption (i.e., data in memory are encrypted

as ciphertexts), their deterministic encryption introduces a new threat — ciphertext side

channels: when a TEE-shielded program is consecutively writing to the same memory

address, the generated ciphertexts collide if identical plaintext (i.e., secrets) are written.

This thesis shows that both inputs and the neural network’s weights can be leaked via

TEE’s ciphertext collision patterns.

1.3 Challenges and Solutions

1.3.1 Secret Analysis

We first elaborate on the challenges and our contributions in recovering secrets from dif-

ferent side channels w.r.t. the three adversaries mentioned in Sec. 1.2.
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Challenge One: High-dimension Inputs and Large Search Space (¨)

While the secret analysis has been widely studied in cryptography systems to recover

private keys, their techniques do not apply to AI systems due to the large search space.

Inputs of AI systems are often high-dimensional media data such as images, audios, and

texts. For instance, a common RGB image of 1024⇥ 1024 size contains more than 3M pixels

and each pixel’s value ranges from 0 to 255. A private key in modern RSA encryption,

however, only has 2048 binary key bits (i.e., either 0 or 1).

To tackle the issue of large search space, this thesis identifies the following opportu-

nities. To ease the understanding, we use images as representative inputs of AI systems;

our observations are also applicable to other types of inputs (see details in Chap. 3). First,

different from cryptographic keys where key bits are private, not all pixels in an image are

secrets — failing to recover a few pixels in an image’s background still indicates a success-

ful input recovery, as long as the recovered inputs leak user privacy (e.g., being visually

consistent to user’s inputs). Second, unlike cryptographic key bits that are independently

sampled, pixel values are highly correlated, e.g., the digit one images in Fig. 1.2(a)-(b),

where pixels are “constrained” (not randomly sampled) to form a valid digit one. With

such correlations, the search space can be further reduced.

0.00.00.00.00.00.00.0
0.00.00.00.80.20.00.0
0.00.00.10.91.00.10.0
0.00.00.21.01.00.10.0
0.00.00.21.01.00.10.0
0.00.00.21.01.00.10.0
0.00.00.41.01.00.10.0
0.00.00.61.00.90.10.0
0.00.00.61.00.70.00.0
0.00.00.61.00.70.00.0
0.00.00.61.00.70.00.0
0.00.00.91.00.70.00.0
0.00.00.91.00.40.00.0
0.00.11.01.00.30.00.0
0.00.11.01.00.30.00.0
0.00.61.00.80.00.00.0
0.00.00.90.60.00.00.0
0.00.00.90.60.00.00.0
0.00.31.00.60.00.00.0
0.00.21.00.90.00.00.0
0.00.10.80.70.00.00.0
0.00.00.00.00.00.00.0

……

(a) Digit “1” (b) 1 - pixel values / 255 (c) Digit “1” of varied rotation
angle and length.

length

rotation angle

Figure 1.2: Pixel values of a digit “1” image and the illustration of the semantic-wise
viewpoint.
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Solution: A Semantic-wise Viewpoint (¨)

Motivated by the above observations, this thesis therefore focuses on semantical contents

in user’s inputs (e.g., a face in an image), rather than exact pixel values. This semantic-

wise viewpoint is also aligned with AI systems, as they are designed to perceive semantics

in their inputs. The semantics of media data are characterized by data manifolds, which

are low-dimensional representations of media data that capture semantics in their con-

tents. Consider again the digit one image in Fig. 1.2(a), whose size is 32⇥ 32, to represent

this image using pixels, 32⇥ 32 integers from [0, 255] are required. Alternatively, we can

simplify the digit one as a segment (i.e., only focusing on the visual appearance of the

digit one); this way, only two dimensions1 are needed to represent different (simplified)

digit ones, as illustrated in Fig. 1.2(c). Later in Chap. 3, we will show that, for more com-

plex inputs like face photos, our semantic-wise viewpoint can reduce the search space by

more than 90%. This viewpoint also enables automated and unified recovery for inputs of

different types and formats, as will be introduced in Chap. 3.

Challenge Two: Partial Leakage and Insufficient Observations (≠)

With the above semantic-wise viewpoint, we can recover AI system’s inputs from cache

side channels in data processing libraries. However, the recovery pipeline cannot be

directly employed in the context of TEE and ciphertext side channels: as illustrated in

Fig. 1.3(c), only blurry images of missing details are recovered. This issue is due to the

partial leakage and insufficient observations of ciphertext side channels in TEE-shielded

neural networks.

As shown in Fig. 1.3(b), ciphertext side channels are records of ciphertext collisions

(i.e., the ciphertexts collide or not when writing secrets into the memory) of the victim,

providing only binary observations. Cache side channels, in contrast, record the accessed

cache units (e.g., cache sets, cache lines, etc.) of the victim; merely a L1 cache can have 64

cache sets, resulting in more informative observations to attackers. Moreover, in threat ¨

which is identified in data processing libraries, the leakages are induced by the libraries’

direct operations on image pixels, whereas in threat ≠’s scenario, intermediate results
1We clarify that a digit one’s semantics are more complicated than that of the simplified segment, but the
additional dimensions required for the concrete representation should not be too many.
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loop:
movss [addr], xmm0
jmp loop

TEE

FeaturesImage
region

NN
layer

Y or N

(b) Binary observations
(a) Ciphertext collisions induced by

writing features (c) Recovered image

Collide?

Figure 1.3: Blurry images are recovered due to the partial leakage and insufficient obser-
vations issues in ciphertext side channels.

written by a neural network (that trigger ciphertext collisions) are features extracted from

its input; these features are highly abstracted such that certain input information is in-

evitably lost, as shown in Fig. 1.3(a).

!"

#(")
ℎ !∗

ℛ ℎ : 	*(!∗|ℎ)

*(ℎ|!∗) *(!∗)

Figure 1.4: Illustration of our information reconstruction that is through the Bayesian per-
spective.

Solution: Information Reconstruction through Bayesian Perspective (≠)

As illustrated in Fig. 1.4, suppose the input x leads to ciphertext side channel observation

c, the input recovery (as exploited in ¨) essentially transforms input information leaked

in c into a proper form that is aligned to the original input (e.g., a blurry image h = T (c)

shown in Fig. 1.4). The key hurdle in ≠’s context is reconstructing x’s lost information

from h (e.g., a partially recovered image). This should be feasible by leveraging the cor-

relations (that constrain the image to have meaningful contents) among pixels. The same

applies to other input types; see details in Chap. 4.

From the Bayesian perspective, the objective of the reconstruction is:

arg max
x⇤

p(x⇤|h), (1.1)
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where p(x⇤|h), which infers x⇤ based on h, is maximized when x⇤ equals the target input

x. According to Bayesian theorem, p(x⇤|h) can be reformulated as:

p(x⇤|h) =
p(h|x⇤)p(x⇤)

p(h)
. (1.2)

Since h is known after transforming the leaked information in c, p(h) is accordingly fixed.

As illustrated in Fig. 1.4, the reconstruction’s objective is therefore equivalent to:

arg max
x⇤

p(h|x⇤)p(x⇤). (1.3)

Here, p(x⇤) indicates how likely x⇤ is semantically meaningful (e.g., a valid face im-

age rather than random pixels). Estimating p(x⇤) has been widely studied and exist-

ing research can provide out-of-the-box solutions via generative models (e.g., GANs [89],

VAEs [128]). The p(h|x⇤), which is the inversion of the reconstruction process, mimics

the information loss from the target input x to the observed h. Estimating p(h|x⇤) is in-

herently easier than estimating p(x⇤|h) as it “removes” information from x⇤. Based on

this reformulation, this thesis for the time demonstrates successful input recovery from

TEE-shielded neural networks, as will be detailed in Chap. 4.

Challenge Three: Indirect Leakage and High Integrity Requirement (Æ)

With the recovered inputs on hand, one may expect to train an equivalent neural network.

However, this is less preferred in practice. Training a neural network often requires tens

of thousands of inputs, that is, it requires performing the above input stealing attacks for

the same amount of times. Frequently launching such attacks is not only time-consuming

but also raises the risk of being noticed by the victim.

Therefore, this thesis focuses on directly recovering neural network weights from ci-

phertext side channels without using relevant inputs. The challenges of recovering neural

network weights primarily lie in three folds. First, neural network weights have far more

dimensions than that of user inputs, e.g., modern neural networks usually have billions

of weight elements, and each weight element is a floating-point number of (theoretically)

infinite range. Second, neural network weights are preloaded before computation and
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TEE-shielded neural networks do not write their weights into memory during computing;

the leakages in ciphertext side channels are induced by intermediate computation results

indirectly derived from weights. Third and most importantly, neural network weights

exhibit a high integrity requirement — a few incorrectly recovered weight elements (e.g.,

1⇠5 incorrect ones out of ⇠10M weight elements [206, 268, 151]) can make the weights

non-functional; this is not like the case in recovery inputs, where two visually identical

images may have many pixels different.

Solution: Extracting Neural Network’s Functionality (Æ)

Recall as mentioned in Sec. 1.1, the key incentive of stealing neural network weights is to

clone its functionality, as it is the intellectual property of the AI system. In this regard, it

is unnecessary to recover the exact weights; this is supported by the training procedure of

neural networks, where different but functionality-equivalent weights can be obtained in

multiple training attempts. Moreover, extracting the neural network’s functionality from

its ciphertext side channels is feasible: the ciphertext side channels are induced by the

intermediate computation results, which are features extracted by the neural network and

reflect its functionality.

Hence, we exploit to directly recover functionality-equivalent weights from a TEE-

shielded neural network’s ciphertext side channels, and to make the attack stealthy, we

propose to recover functional weights by observing the neural network’s one execution

without interacting with it (i.e., querying outputs from the neural network). We achieve

this by leveraging the hyper-network, a special neural network that generates neural net-

work weights. We also design a novel training algorithm for the hyper-network, deliver-

ing task-wise generalizable weight generation: our hyper-network can generate weights

for an unseen functionality without using relevant inputs. The detailed algorithm and

design considerations will be introduced in Chap. 5.

1.3.2 Leakage Analysis

The leakage analysis primarily localizes program modules (e.g., an instruction accessing

the memory, or a matrix operation in a neural network) that induce secret-dependent side
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channel observations. The key hurdles are the precision and scalability of the localization.

Conceptually, previous works have proposed various models to characterize the leak-

age’s patterns, e.g., an array index that is secret, or a branch condition determined by a

secret. However, with more leakage patterns increasingly discovered, existing models are

not sufficient to cover all leakage sources. For instance, our work in Chap. 6 shows cache

side channel leakage due to implicit data dependencies (e.g., an array access whose index

is not secret, but is within a loop whose iteration count is secret). Such leakage patterns are

not modeled previously, leaving considerable leakage sources unnoticed by developers.

In addition, previous leakage analysis techniques exclusively focus on cache side channel

leakage, and are inapplicable to ciphertext side channels. The first ciphertext side channel

localization was proposed in 2023 [69], despite that ciphertext side channels have been

known for years since 2021 [149].

Technically, most prior localization works rely on program analysis techniques (e.g.,

abstract interpretation [63] or symbolic execution [127]) to identify leakage sources. These

techniques are computationally expensive and are limited to small programs. Existing

works thus first pinpoint potentially vulnerable program segments and then apply the

analysis to these selected program segments. As will be introduced in Chap. 6, previous

works have neglected considerable vulnerable modules in their analyzed software, due

to the limited scalability. Moreover, AI infrastructures are implemented as programs of

production size, for instance, a single execution of a neural network running with PyTorch

can generate billions of side channel observations, significantly exceeding the scale of

prior works (e.g., analysis with abstract interpretation may only support programs with

hundreds of memory accesses [73]).

Solution: A Cooperative Game for Leakage Localization

This thesis solves the localization problem by forming the secret leakage as a cooperative

game among different leakage sources. Since we have demonstrated recovering secrets

from different side channels in the three threats, we can localize the leakage sources by in-

vestigating how much information each side channel record contributes to the recovery;

the corresponding program points that generate these records are the leakage sources.

Essentially, prior works explore possible patterns of leakage sources and leverage pre-
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defined patterns to identify leakage sources. This thesis terminates this endless explo-

ration (considering that new leakage patterns and new side channels are continuously

discovered) by focusing the consequences of the leakage sources, i.e., contributing to the

secret recovery. Extending our analysis to new leakage patterns or side channels has no

technical hurdle, as long as they can be used to recover secrets.

This recast to a cooperative game is well-addressed by the game theory via Shapley

value [220], which accurately attributes the recovered information to each leakage source.

Nevertheless, the cost of computing Shapley value is exponential to the number of side

channel records, making it infeasible to compute in practice. This thesis identifies a key

property — sparsity — in side channels (i.e., only a few side channel records contribute to

the secret recovery), and proposes optimizations to reduce the cost to nearly constant. Our

techniques further enables quantitative analysis, so that developers can prioritize patches

to the most severe leakage sources. As will be elaborate in Chap. 6, we localize hundreds

of new leakage sources in software that have been extensively analyzed by prior works.

1.4 Contributions

This section summarizes the key contributions this thesis has made to side channel analy-

sis and AI system security research. In the corresponding chapter of each presented work,

we will show more detailed contributions regarding techniques, findings, impacts, etc.

Overall, this thesis’s contributions primarily lie in the following aspects:

• Attack & Threat. Our works for the first time demonstrate two severe threats in

modern AI systems. (1) We show that a malicious user, though without any system-

level privilege, can recover other user’s inputs from cache side channels of various

data processing libraries. (2) We also reveal the “false trust” that Trust Execution

Environments (TEEs) provide to AI systems. Despite that TEEs have been widely

adopted to protect users when querying untrusted AI service providers, and prevent

malicious host machines from stealing the deployed neural networks, our works

show that both inputs and neural networks of AI system can be leaked via TEE’s

ciphertext side channels.
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• Secret Recovery. We propose the first practical techniques for recovering user’s in-

puts and neural network’s weights from different side channels. (1) Our attack for

the first time demonstrates that inputs of different types (including images, text, au-

dios, and videos) and complex content (e.g., face photos, chest X-ray images) can be

accurately recovered with secret information retained. The whole recovery process

is fully automated without any human intervention. (2) Our attack also for the first

time recovers weights of real-world neural networks. The attack is highly stealthy

and efficient; it does not require querying the target neural network and can directly

recover functional weights without further training or tuning.

• Leakage Localization. Our work proposes a new paradigm of side channel leak-

age localization. Prior techniques primarily model leakage patterns and are limited

to specific side channels of pre-defined patterns. We turn our focus to the conse-

quences of the leakage sources, and recast the leakage localization as identifying

program points that contribute to the secret recovery, delivering a generic localiza-

tion paradigm that is agnostic to leakage patterns or side channels. By re-examining

software extensively studied by prior localization works, we have identified hun-

dreds of new leakage sources. With meticulous optimization, our localization for

the first time supports production-size software in AI infrastructures.

1.5 Thesis Organization

Chap. 1 has briefly introduced the studied problem, challenges, and our solutions and

contributions in side channel analysis for AI infrastructures. The rest of this thesis is

organized as follows.

Chap. 2 introduces preliminaries of AI infrastructures, their security implications, and

the observable side channels; it also reviews related works in both secret and leakage anal-

ysis. Then, following the three threats discussed in Sec. 1.2, Chap. 3 presents our work

(published in USENIX Security 2022 [278]) that shows how a malicious user can recover

other user’s inputs from cache side channels in data processing libraries. Chap. 4 shows

our work (published in IEEE S&P 2025 [275]) on breaking TEE’s security guarantees and

demonstrating how a malicious AI service provider can steal user inputs. Chap. 5 intro-
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duces our work (published in CCS 2024 [276]) that exploits how weights of TEE-shielded

neural networks can be leaked to the host platform. All three works accordingly propose

countermeasures to our demonstrated attacks. Later in Chap. 6, we introduce our work

(published in USENIX Security 2023 [277]) on quantitative analysis of leakage sources;

this work delivers scalable and generic techniques for localizing leakage sources in differ-

ent side channels of production-size software. Finally, Chap. 7 summarizes key problems,

solutions, and findings in this thesis.
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CHAPTER 2

PRELIMINARIES AND RELATED WORKS

This chapter briefly introduces preliminaries and related works of the thesis’s research

topics. More detailed background knowledge of each research work will be presented in

Chap. 3, Chap. 4, Chap. 5, and Chap. 6 based on their contexts.

2.1 Cache Side Channels

2.1.1 Caching Mechanisms and Exploitation

Modern computer systems have employed various caching mechanisms to accelerate data

retrieval and enhance their overall performance. In essence, caches serve as high-speed

buffers that store frequently accessed data and instructions, bridging the gap between fast

processor and slow main memory access. Nevertheless, this optimization also introduces

security vulnerabilities known as cache side channels.

Cache side channels are induced by two factors: 1) the shared cache between victims

and adversaries, such that adversary’s and victim’s cache accesses interfere with each

other, and 2) the measurable variations of cache hit (i.e., the accessed data are found in

cache) and cache miss (i.e., the accessed data are not in cache and need to be fetched from

the main memory). By running a program co-located with the victim on the same device,

the attacker can frequently access the shared cache and infer the victim’s cache access

patterns during his/her access intervals. Cache side channels are severe threats since

they can be exploited remotely (without physical access to the target) by non-privileged

adversaries; the exploitation is also highly stealthy.

Flush+Reload [270] and Prime+Probe [164, 195] are the two most well-studied cache

side channel exploitation techniques. Flush+Reload assumes sensitive code or data is

shared between the attacker and the victim. Thus, the attacker can clean the shared cache
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with the clflush instruction and observe the victim’s subsequent behaviors by measur-

ing the re-access time to the cache later. A fast re-access means the victim has accessed

the target memory address, and a slow re-access means the opposite. On the other hand,

Prime+Probe does not require any shared user-space memory pages and is more potent

and widely applicable. However, Prime+Probe only observes activities in more coarse-

grained cache units: it cannot recognize specific accesses to a cache line and only detects

accesses to the monitored cache set. Instead of flushing the cache in a ready-made man-

ner, Prime+Probe evicts all the data in the target cache set by filling it with the attacker’s

data. When the attacker re-accesses a cache set, a slow re-access indicates that the victim

has accessed this cache set.

CPU Cache:
small, but fast

Memory:
large, but slow

x = M[j]

ci cj ci cj ci cj

(a) Attacker:
fill all cache units

(b) Victim:
fill cache unit cj

(c) Attacker:
miss at cache cj

Longer time!

Figure 2.1: Illustration of a typical workflow of Prime+Probe.

A typical exploitation procedure of Prime+Probe is shown in Fig. 2.1. Each exploitation

iteration consists of two steps. First, the attacker fills all cache sets with his/her own

data. Then, the attacker re-accesses all cache sets after a time interval. If the victim has

accessed a cache set cj during the time interval, the attacker triggers a cache miss, which

can be reflected as a longer access time. Otherwise, the attacker knows that the cache

set cj was not accessed by the victim. By repeatedly performing the access & re-access

process, the attacker can infer the victim’s cache access patterns, which depend on the

victim program’s execution and data access behaviors.
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2.1.2 Data Processing Libraries

Inputs of AI systems are media data like images, text, audios, etc., which are often stored

in different format specifications. For instance, an image of the same content may be

stored in JPEG, PNG, or BMP formats. To handle the diverse formats and extract the se-

mantic information (which is format-agnostic), modern AI systems adopt data process-

ing libraries like libjpeg and FFmpeg to preprocess the inputs. The preprocessing

typically parses the data bytes (e.g., pixels of an image, tokens of a sentence) and re-

arranges them into a proper form (e.g., an image is usually converted into a matrix of

channels⇥ width⇥ height size).

In practice, libjpeg denotes one representative image processing library; it is widely

adopted in frameworks like PyTorch and TensorFlow. FFmpeg is broadly employed to

process audios and videos. Hunspell maintains a dictionary and frequently checks

words in the dictionary, representing a popular paradigm of handling words in modern

AI systems. Overall, this thesis finds cache side channel leakages in all these popular data

processing libraries.

We find that, when processing inputs, those libraries have extensive cache accesses

that depend on data bytes of the input. For instance, we notice that in libjpeg, pixel

values frequently involve in array index, so that the accessed cache unit is determined

by the pixel values. As a consequence, these libraries’ cache access patterns are highly

dependent on the processed input. By exploiting the cache side channels in those libraries

(e.g., following the procedure depicted in Fig. 2.1), attackers can record a sequence of

their accessed cache units. Chap. 3 will present the concrete techniques of automatically

recovering inputs from the corresponding cache access sequence.

2.1.3 Constant-Time Computations of Neural Networks

Neural network’s computations are naturally free of cache side channels. Formally, a neu-

ral network F = . . . fi+1 � fi � fi�1 . . . consists of multiple connected layers and each layer

is a function f (x) = s(qx + b). The s is the non-linear activation function which does not

have input-dependent conditions to support efficient computations for batched inputs.

The layer f ’s weights [q, b] and input x are all matrices. The internal computation of a
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neural network is therefore a sequence of matrix operations of a fixed computing routine,

whose data accesses and control branches are fixed. Accordingly, the neural network’s

accessed cache units are constant regardless of the input x or weights [q, b].

With this regard, the cache side channel leakage of user inputs can be seen as a new

threat brought by those data processing libraries. While a few prior works have exploited

the input leakage in these libraries [265, 95], they focus on privileged adversaries like the

operating system (OS). Our work presented in Chap. 3 for the first time demonstrates this

threat from a remote and non-privileged malicious user’s perspective, rendering a higher

risk of privacy leakage.

2.2 Ciphertext Side Channels

2.2.1 Trusted Execution Environments

To prevent the host1 from reading the AI system’s inputs or neural network weights, the

most mature and practical way is deploying the AI system inside Trusted Execution Envi-

ronments (TEEs); this mitigation has been widely adopted in both academia [143, 125, 156]

and industry [122, 20, 114], and its security guarantee is well acknowledged [285]. TEEs

leverage memory encryption to create isolated execution environments for the AI system,

so that the AI system’s inputs, outputs, and computation results are encrypted. As a re-

sult, despite that the host can read data from the AI system’s memory, he/she can only

view the ciphertexts. In practice, TEE’s encryption engine encrypts/decrypts memory

data on-the-fly and is implemented as a hardware module between the CPU chip and

DRAM.

TEE’s memory encryption is constrained by two factors. First, to enable efficient ran-

dom memory access, different memory blocks should be encrypted independently. Sec-

ond, to support encrypting large memory, additional space and latency are needed for

counters. To meet these two requirements, AES encryption with deterministic, block-based

mode is widely used by TEEs with large encrypted memory, such as AMD SEV [122], Intel

TDX [114], Intel SGX on Ice Lake SP [114, 119], and ARM CCA [20]. Specifically, given a

1Note that in threat ≠ introduced in Sec. 1.2, the malicious AI service provider is also the host.
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memory block, to encrypt its memory value v, the encryption first takes a tweak function

T to calculate a mask m = T(a), where a is the address of the block. The encrypted ci-

phertext is generated as c = P(v�m)�m, where P is the encryption function. Therefore,

when the same value v is stored at the same address a, the generated ciphertext is always

identical (i.e., ciphertext collision).

Label 1Label 1

loop:
...
movss xmm0, [addr_x]
movss [addr], xmm0
...
jmp loop

store xmm0 (a) to [addr]:

…

store xmm0 (b) to [addr]:

observing ciphertext changes

observing ciphertext no change

a != b

❶ DNN inference ❷ low-level instruction

❸ observable information

case① case ② ①

②

a == b

Figure 2.2: Illustration of ciphertext collision and its induced leakage.

Ciphertext side channels exploit TEE’s deterministic encryption to infer the equality

relation of consecutive memory writes. As illustrated in Fig. 2.2, suppose the ciphertext

does not change after a memory write, the attacker easily infers that the written value

equals the value previously stored in the target memory address; in contrast, a different

ciphertext indicates a changed written value.

2.2.2 Nested Loops and Non-Linearity in Neural Networks

This thesis reveals the leakage of inputs and neural network weights in TEE-shielded

neural networks due to ciphertext side channels. Essentially, the computations inside

a neural network are matrix operations between inputs and weights, which are imple-

mented as nested loops. Therefore, a neural network’s computations can lead to repeated

memory writes to the same memory address. In addition, although intermediate com-

putation results of a neural network are floating-point numbers which may rarely incur
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collisions, neural network’s non-linear activation functions2 often output identical inter-

mediate values. These non-linear activation functions either map inputs to a smaller range

(e.g., Sigmoid that maps values from [�•, +•] into [0, 1]), or convert continuous values

into discrete ones (e.g., ReLU maps all negative values into 0). Considering that mod-

ern computer systems have a limited precision (e.g., 64-bit) for floating-point numbers,

the neural network’s non-linearity can largely increase the probability of identical written

values.

The above two factors (i.e., repetitive writes to the same memory address and consid-

erable identical written values) make ciphertext side channels highly exploitable in TEE-

shielded neural networks. Since the intermediate values written into the memory are only

determined by the neural network’s inputs and weights (i.e., changing inputs or weights

can lead to different intermediate values), the ciphertext collisions induced by the neural

network’s memory writes correlate to both inputs and weights, leaking their information

to the host. Modern neural networks can run in different ways inside TEEs, leading to dis-

tinct memory write patterns and thus different leakage behaviors. We introduce different

runtime environments of neural networks below in Sec. 2.2.3.

2.2.3 Runtimes of Neural Networks

Interpreter-Based Deep Learning Frameworks

The most popular way is running neural networks in interpreter-based deep learning (DL)

frameworks like TensorFlow [12] (maintained by Google) and PyTorch [199] (maintained

by Meta). Essentially, a DL framework is a software library that provides a programming

interface for developers to build and run neural networks. The runtime system of typical

DL frameworks consists of two components: (1) the Python interfaces that parse and in-

terpret the high-level neural network into a set of matrix operations, and (2) third-party

linear algebra libraries (e.g., OpenBLAS [282], MKL [242], and Eigen [93]) that implement

such operations with efficient low-level binary code.

Modern DL frameworks support both forward propagation (i.e., inferencing with user’s

input) and backward propagation (e.g., computing gradients during training). However,

2The non-linearity is the core of neural network’s intelligence.
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different DL frameworks may implement distinct computation paradigms. For instance,

PyTorch maintains a dynamic computational graph on the fly, and when computing gra-

dients during backward propagation, it actively deletes the computational graph to save

computing resources. TensorFlow, in contrast, maintains a static computational graph;

this graph is fixed after initialization and does not change during the entire execution. The

different computation paradigms of PyTorch and TensorFlow lead to different amounts of

information leakage via ciphertext side channels, as will be discussed in Chap. 4.

Executables Compiled via Neural Network Compilers

Neural networks are increasingly compiled into executables for better performance across

different platforms. Two mature neural network compilers, TVM [51] and Glow [210],

emit standalone executables that can be run with minimal external dependencies. The

real-world usage of neural network compilers has been illustrated in recent research [51,

210, 172, 117] and industry practice. The TVM community has reported that TVM has

received code contributions from companies including Amazon, Facebook (Meta), Mi-

crosoft, and Qualcomm [57]. As a complement to DL framework’s usage in GPUs, neural

network compilers fulfill the emerging demand for a wide range of other platforms, e.g.,

TVM has been used to compile neural networks for CPUs [165, 117]. Facebook has also

deployed Glow-compiled neural networks on CPUs [185]. Overall, neural network com-

pilers are increasingly vital to boost neural network’s applications on CPUs, embedded

devices, and other heterogeneous hardware backends [18, 248].

Neural network compilers typically accept a high-level description of a well-trained

neural network, exported from DL frameworks like PyTorch, as their input. During com-

pilation, these compilers often convert the neural network into intermediate representa-

tions (IRs) for optimizations. High-level, platform-agnostic IRs are often graph-based,

specifying the neural network’s computation flow. Platform-specific IRs such as TVM’s

TensorIR and Glow’s High Level Optimizer (HLO) specify how the neural network is im-

plemented on a specific hardware backend and support hardware-specific optimizations.

Optimizations performed by neural network compilers often include constant folding,

operator fusion (e.g., fusing a ReLU operator with a preceding convolution operator),

platform-aware scheduling, and others. Finally, these compilers convert their low-level
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IRs into assembly code (or first into standard LLVM/CUDA IR [139, 189]).

2.3 Secret Analysis Techniques

2.3.1 Recovery Techniques for Inputs

Recovering inputs of AI systems via side channel leakage is inherently challenging as

discussed in Sec. 1.3. Only a few prior works have demonstrated successful attacks, but

with limited applicability and precision. For instance, Xu et al. [265] studied how a ma-

licious OS can infer images from libjpeg via controlled-channel attacks (i.e., a strong

side channel that is only exploitable by the OS). Despite that the attackers are highly priv-

ileged, they can only recover outlines of the images, leaving the rich details (which are of

interest in AI systems) unrevealed. This thesis however considers non-privileged attack-

ers which renders a more severe threat to the AI system. As will be shown in Chap. 3 and

Chap. 4, our recovered inputs are visually consistent with the original ones; they retain

sensitive information (e.g., face identities, disease information) to a great extent and can

be even leveraged to train a new neural network and enable downstream attacks to the

AI system.

Several prior works have turned the focus on side channels induced by neural net-

work’s computations [182, 251]. They require the attacked neural networks to be binarized

(i.e., weights elements are either -1 or 1) and assume white-box access to the attacked neu-

ral networks. They also have strong requirements for the inputs: the inputs are assumed

to be black-and-white and have clean backgrounds. Despite that strong assumptions are

made, these attacks only recover coarse shape in images. In practice, real-world neural

networks have floating-point weight elements and take colorful and complex images as

inputs, making these techniques inapplicable. Our work in Chap. 4 is the first to recover

real-life inputs from side channels of general neural networks; we also demonstrate suc-

cessful attacks for other more complex input types like audios and videos.
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2.3.2 Recovery Techniques for Neural Network Weights

Neural Network Structure

Most existing works explored how to recover a neural network’s structure (e.g., how many

layers a neural network has, how different layers are connected, etc.) from different side

channels [112, 267, 105, 266, 167, 81, 75]. While they had received wide attention previ-

ously, the structure information is becoming less valuable in practice, as neural network’s

structure is often public in modern AI systems, and neural networks in most commercial

AI systems are built upon public backbones. Moreover, stealing a neural network’s struc-

ture does not bring much benefit to attackers, because without well-trained weights, the

neural network is unusable. As we have discussed in Sec. 1.1, neural network’s weights

are crucial to the AI system’s intelligence and considerable costs are spent on training

weights (e.g., collecting the labeled data, running the training algorithm, etc.) when de-

veloping an AI system. Later, we will show in Chap. 5 that a neural network’s structure

information is not needed when recovering its weights. In that sense, this thesis focuses on

recovering neural network’s weights from side channels, and proposes the first successful

weight recovery solution for real-world neural networks.

Neural Network Weights

Similar to the case of input recovery, recovering neural network weights from side chan-

nels was previously believed hardly doable (see challenges discussed in Sec. 1.3). Only

limited works show successful recovery, but with too strong assumptions.

For instance, some works assume the neural network have secret-dependent computa-

tion paradigms (e.g., a neural network prunes its weight for different inputs [113]); how-

ever, this is not the case in reality. Some other works assume most weight elements of a

neural network are public [36, 263], e.g., only weights in the last layer are secret, so that

the attacked (sub) neural network becomes fully linear and attackers can directly calculate

the weights by dividing the output with the input. This assumption also does not hold

in practice. Some attacks also perform brute-force guesswork [28, 75]. Essentially, they

treat side channel observations as “signatures” of neural network weights, and enumer-

ate possible weights to find the best match. However, this approach is not feasible for
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real-world neural networks with millions of weight elements. As will be demonstrated in

Chap. 5, our weight recovery technique applies to large real-world neural networks like

Vision Transformer [72] and works when the full weight elements are private. It also does

not require any special computation paradigms of neural networks and is applicable to

general neural networks.

2.4 Leakage Analysis Techniques

The leakage analysis has been a long-standing research topic in the security community,

and a series of works have been proposed to detect leakages due to cache side channels.

As we have discussed in Sec. 1.3.2, most previous works require modeling the leakage

patterns, and thus are only applicable to one specific side channel and detect leakage

sources exhibiting the modeled patterns. Moreover, they are primarily designed for cryp-

tographic software (e.g., an RSA encryption implement by OpenSSL); extending them to

the data processing libraries and neural network runtimes (e.g., DL frameworks or neural

network executables) in AI systems is non-trivial and remains unclear.

The majority of previous leakage analysis works focuses on cache side channels due

to the high severity and the wide threat that cache side channels bring. Below, we briefly

introduce technical details of representative works. More leakage analysis works and their

limitations that motivate our research will be discussed in Chap. 6.

CacheAudit [73] denotes one of the earliest leakage analysis works. It leverages ab-

stract interpretation [63] to over-estimate the information leakage of private keys in cryp-

tographic software. Hence, CacheAudit delivers sound analysis: it can rigorously ver-

ify that a program is free of cache side channels, but cannot decide whether a program

has cache side channel leakage. Given that most real-world programs do not fully elim-

inate secret-dependent data access and control branches, CacheAudit’s application scope

is largely limited. The abstract interpretation is also known for its low scalability, such

that CacheAudit only supports small programs with a few hundred of cache accesses.

CacheD [244] for the first time supports localizing leakage sources of cache side chan-

nels in a program. This improvement is achieved by the trace-based analysis, which trades

the soundness guarantee for more precise analysis over each instruction’s cache access.
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Specifically, given a target program g, CacheD first executes it with one secret k (i.e., a

private key) and then monitors secret-related instructions via taint analysis. With the se-

cret k as the taint source, CacheD propagates the taint information along g’s execution to

mark instructions that use k. Then, for every secret-related memory access, CacheD for-

mulates its accessed cache lines as a symbol constraint (with k as the symbol) and checks

whether different cache lines can be accessed with different secrets k. If so, CacheD flags

the corresponding instruction as a leakage source of cache side channels.

Despite the promise, CacheD suffers from the coverage issues: since it is traced-based,

it can only localize leakage sources covered by the executed trace. To alleviate this issue,

CacheS [243] combines the symbolic execution in CacheD with abstract interpretation.

And to further improve the low scalability of abstract interpretation, a novel abstract do-

main named Secret-Augmented Symbolic (SAS) domain is proposed. The SAS domain

categorizes program executions as secret-dependent and secret-independent; it only pre-

cisely tracks those secret-dependent executions to maintain the precision of analysis. The

remaining secret-independent executions are coarsely modeled to improve the scalabil-

ity. With these optimizations, CacheS for the first time supports nearly sound3 cache side

channel analysis for real-world programs.

Besides localizing leakage sources, one recent work, Abacus [26], also examines how

much information is leaked via a program’s cache side channels. Abacus is extended

based on CacheD, and it leverages the mutual information between each leakage source

and the secret to quantify the information leakage. The mutual information reflects how

much search space of the secret can be reduced by observing a leakage source’s result-

ing cache side channel observation. In this regard, for each leakage source localized by

CacheD, Abacus samples different secrets (i.e., private keys in its scenario) and counts

the percentage of secrets that result in the same cache side channel observation — this

percentage quantifies the reduced search space and is leveraged to calculate the mutual

information.

3Its implementation has unsound issues; we refer interested readers to the detailed discussions in the
CacheS paper [243]
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CHAPTER 3

AUTOMATED SIDE CHANNEL ANALYSIS OF
MEDIA SOFTWARE WITH MANIFOLD

LEARNING

This chapter presents MANIFOLD-SCA, a framework that automatically reconstructs confidential

media inputs from side channel traces of media software (i.e., data processing libraries adopted in

AI systems). It reveals the severe threat that a malicious user can pose to the data privacy of

modern AI systems. MANIFOLD-SCA is based on manifold learning: it forms the reconstruction

of media inputs from side channel traces as cross-modality manifold learning task. This chapter

also presents a novel and highly effective defensive scheme towards our attack. The defense, dubbed

perception blinding, is motivated by the popular cryptographic blinding and perturbs media inputs

with perception masks. The defense can effectively mitigate our attack but brings negligible cost to

the normal usage of media software.

3.1 Introduction

Side channel analysis (SCA) infers program secrets by analyzing the target software’s in-

fluence on physical computational characteristics, such as the execution time, accessed

cache units, and power consumption. Practical SCA attacks have been launched on real-

world crypto systems [271, 164, 262] to recover crypto keys. With the adoption of cloud

computing and machine learning as a service (MLaaS), media software, a type of applica-

tion software used for processing media files like images and text, is commonly involved

in processing private data uploaded to cloud (e.g., for medical diagnosis). Existing works

have exploited media software with extensive manual efforts or reconstruct only certain

media data [265, 95, 279]. However, the community lacks a systematic and thorough un-

derstanding of SCA attack vectors for media software and of the ways that private user

inputs of various types (e.g., images or text) can be reconstructed in a unified and au-

tomated manner. Hence, this is the first study toward media software of various input
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formats to assess how their inputs, which represent private user data, can be leaked via

SCA in a fully automatic way.

Recent advances in representation learning and perceptual learning [33, 289] inspired

us to recast SCA of media software as a cross-modality manifold learning task in which

an autoencoder [101] is used to learn the mapping between confidential media inputs and

the derived side channel traces in an end-to-end manner. The autoencoder framework

can learn a low-dimensional joint manifold of media data and side channel observations

to capture a highly expressive representation that is generally immune to noise.

Our proposed autoencoder framework is highly flexible. It converts side channel

traces into latent representations with an encoder module fq, and the media data in image,

audio and text formats can be reconstructed by assembling decoders yq that correspond

to various media data formats to fq. By enhancing encoder fq with attention [260], the au-

toencoder framework can automatically localize program points that primarily contribute

to the reconstruction of media inputs. That is, the attention mechanism delivers a “bug

detector” to locate program points at which information can leak.

The observation that manifold learning captures key perceptions of high-dimensional

data in a low-dimensional space [289] inspired us to propose the use of perception blind-

ing to mitigate manifold learning–based SCA. Well-designed perception blinding “dom-

inates” the projected low-dimensional perceptions and thus confines adversaries to only

generate media data perceptually bounded to the mask. In contrast, media software that

is typically used to process data bytes of media data experiences no extra difficulty in

processing the blinded data and recovering the original outputs.

Our evaluation exploits media software, including libjpeg [158], FFmpeg [3], and

Hunspell [4], which process media data in image, audio, and text formats. We assess

these media software using a common threat model where trace-based attackers [244, 124,

73, 37] can log a trace of CPU cache banks, cache lines, or OS page-table entries accessed

when executing the media software. We also launch standard Prime+Probe attack [237]

in userspace-only scenarios and use the logged cache side channels to reconstruct me-

dia data. We conduct qualitative and quantitative evaluations of six datasets that repre-

sent daily media data whose user privacy can be violated if leaked to adversaries. Our

findings show that user inputs can be reconstructed automatically and that the recovered
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media content, such as images or text, shows considerable (visual) similarity to user in-

puts. The attention modules facilitate localizing program points that incur input leakage;

some have been disclosed before [265, 95, 279], but many, to the best of our knowledge,

were previously unknown. Further, we find that perception blinding is highly effective in

mitigating manifold learning-based SCA. We also demonstrate the noise resiliency of our

attack, and how oblivious RAM [86, 225] can mitigate our attack, though it incurs high

cost. In summary, the work presented in this chapter makes the following contributions:

• Advances in cross-modality manifold learning inspired us to advocate SCA of me-

dia software as a supervised task that learns a joint manifold of media data and

side channel traces. High-quality media data can be reconstructed from side chan-

nel traces in a noise-resilient manner without knowledge of the underlying media

software implementation or media data formats.

• We enhance autoencoder with attention to localize program points that make no-

table contributions to information leakage. Furthermore, we design a low-cost mit-

igation technique called perception-blinding that effectively mitigates the proposed

SCA exploitation.

• Our evaluation subsumes widely used media software used to process images, au-

dio, and text. We demonstrate that high-quality user inputs in various formats can

be reconstructed and that perception blinding predominantly impedes our SCA.

Our attention-based error-localization technique confirms some program points that

have been reported as vulnerable and flags many previously unknown problems in

media software.

Research Artifact. All code and data for this chapter is available at: https://
github.com/Yuanyuan-Yuan/Manifold-SCA [9].

3.2 Background

We introduce the high-level procedure of launching SCA in which program inputs are

assumed confidential. Let a deterministic and terminating program be P. Executing an

input i 2 I can be modeled as P : I ! R, where R denotes the program behavior during

the runtime. Although modern computer architectures prohibit attackers from directly
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recording R and inferring input i 2 I, attackers can leverage various side channels, which

map the runtime behavior of R into an adversarial observation O of certain properties

(e.g., cache status) in the execution context of P. The attacker’s view can be represented as

view : R ! O, where given side channel observation O, the attackers leverage composite

inverse function (view � P)�1 : O ! I to map O back to input i 2 I.

Promising progress has been made by logging (high-resolution) side channels such

as accessed cache line, cache bank, or page table entries in an automated manner [55,

262, 164, 265, 95]. Nevertheless, reconstruction of i from logged side channels requires

attackers to infer the composite inverse function (view � P)�1 : O ! I. Recovery of such

mappings requires an in-depth understanding of how program secrets are propagated

(i.e., secret information flow), which could require considerable manual efforts [265, 95]

or conducting formal analysis [244, 73, 37]. Note that high-resolution side channels (e.g.,

cache line access) usually contain millions of records, but only a tiny portion o⇤ is indeed

input-dependent [243].

SCA on Media Software. Despite the widespread adoption of MLaaS to process users’

private data, the SCA of media software has not been thoroughly examined. For instance,

media software is commonly used to process X-ray images because it allows cost-efficient

disease diagnosis with cloud resources. However, the leakage of such images on the cloud

(e.g., via cache-based side channels [162]) involves a high risk of violating patient privacy.

An immense demand exists to gain insights into the extent of privacy problems in media

software, given its pervasive use in processing private data. Therefore, we examine real-

world media software used to process media data such as photos and daily conversations.

Threat Model and Attack Scenarios. This study reconstructs confidential inputs of media

software from side channels. We thus reasonably assume that different inputs of targeted

media software can induce distinguishable memory access traces. Otherwise, no informa-

tion regarding inputs would be leaked.

Profiled SCA [100, 174, 39, 98, 124, 99] commonly assumes that side channel logs have

been prepared for training and data reconstruction. For our scenario, we generally as-

sume a standard trace-based attacker. We assume that a trace of system side channel

accesses made by the victim software has been prepared for use. Our evaluated sys-

tem side channels include cache line, cache bank, and page table entries. The feasibility
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of logging such fine-grained information has been demonstrated in real-world scenar-

ios [265, 271, 95, 70], and this assumption has been consistently made by many previous

works [244, 74, 115, 255, 37, 243]. In this study, we use Intel Pin [170] to log memory access

traces and convert them into corresponding side channel traces (see Sec. 3.5).

We also benchmark userspace-only scenarios where attackers can launch Prime+Probe

attack [237] to log cache activities when media software is processing a secret input. We

use Mastik [269], a micro-architectural side channel toolkit, to launch “out-of-the-box”

Prime+Probe and log victim’s L1I and L1D cache activities. We pin victim process and

spy process on the same CPU core; see attack details in Sec. 3.6.4.

Exploiting new side channels is not our focus. We demonstrate our attack over commonly-

used side channels. This way, our attack is shown as practically approachable, indicating

its high impact and threats under real-world scenarios. Unlike previous SCA on media

software [265, 95] or on crypto libraries [284], we do not require a “white-box” view (i.e.,

source code) of victim software. We automatically analyze media software executables with

different input types. As will be discussed in Sec. 3.6, we launch manifold learning to re-

construct media data with excellent (visual) similarity to user inputs. Many studies have

only flagged program points of information leakage with (unscalable) abstract interpreta-

tion or symbolic execution [244, 37, 73]. Direct reconstruction of media data is beyond the

scope of such formal method-based techniques, and these studies did not propose SCA

mitigation.

3.3 A Manifold View on SCA of Media Software

This study recasts the SCA of media software as a cross-modality manifold learning task

that can be well addressed with supervised learning. We train an autoencoder [101] that

maps side channel observations O to the media inputs I of media software. Our threat

model (Sec. 3.2) assumes that attackers can profile the target media software and collect

side channel traces derived from many inputs. Therefore, our autoencoder framework is

trained to learn from historical data and implicitly forms a low-dimensional joint manifold

between the side channel logs and media inputs. We first introduce the concept of mani-

fold, which will help to clarify critical design decisions of our framework (see Sec. 3.4).
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Manifold Learning. The use of manifold underlies the feasibility of dimensionality re-

duction [142]. The key premise of manifold is the manifold hypothesis, which states that

real-world data in high-dimensional space are concentrated near a low-dimensional man-

ifold [76]. That is, real-world data often lie in a manifold M of much lower dimensionality

d, which is embedded in its high-dimensional space R of dimensionality D (d ⌧ D). Man-

ifold learning aims to find a projection f : R ! M that converts data x 2 R into y in an

intrinsic coordinate system of M.1 f�1 projects f (x) 2 M back onto representation x in

the high-dimensional space R.

PCA [13] is a linear manifold learning algorithm that aims to find M by extracting

“principal components” of data points [33]. However, most real-world manifolds are non-

linear, and manifold learning algorithms (e.g., ISOMAP) are proposed to project data x

onto nonlinear M [24].

Manifold learning views high-dimensional media data x 2 R as a composite of per-

ceptually meaningful contents that are shown as robust to noise or other input pertur-

bations [77, 290, 289]. Manifold learning algorithms extract expressive representations

of high-dimensional data such as images, audio, and text [48, 97], which explains why

AI models can make accurate predictions pertaining to high-dimensional data [33]. It

is shown that data of the same class (e.g., face photos) generally lie in the same mani-

fold, whereas data of different classes (face vs. vehicle photos) are concentrated on sep-

arate manifolds in low-dimensional space [233]. Manifold learning clarifies the inher-

ent difficulty of designing universal encoding and generative models applicable to high-

dimensional data from different manifolds. The manifold hypothesis has been verified

theoretically and empirically [77, 290, 289].

In Fig. 3.1, we project a set of real-world face images to manifold Mimg of two dimen-

sions. To draw this projection, we tweak our autoencoder framework (see Sec. 3.4) to

convert each face image into a latent representation of two dimensions. We observe that

images are generally separated by skin and hair colors; in addition, face orientations are

roughly decomposed into two orthogonal directions (green and red lines). In fact, recent

studies have shown the effectiveness of conducting image editing by first projecting image

1“Intrinsic coordinate” denotes the coordinate system of the low-dimensional manifold space for each
high-dimensional data sample [159, 60].
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Figure 3.1: Project face photos to a 2-dimensional manifold.

samples into the manifold space [290, 224]. Editing images in the high-dimensional space

involves a large search space [0, 255] for every pixel; the random selection of pixel values

from [0, 255] struggles to create realistic images because arbitrary editing could “fall off”

the manifold of natural images. In contrast, manifold learning facilitates sampling within

M, and the perceptually meaningful contents in M confine manipulations to generate

mostly realistic images [290, 224].

Parametric Manifold. Most manifold learning schemes adopt non-parametric approaches.

Despite the simplicity, non-parametric approaches cannot be used to project new data

points in R onto M. Recent advances in deep neural networks, particularly autoen-

coders, have enabled a parametric nonlinear manifold projection fq : R ! M [289].

Manifold learning can thus process unknown data points of high-dimensional media

data [289, 290, 79, 103, 145, 33] and facilitate downstream tasks like face recognition [76].

High-Level Research Overview

Processing media data has an observable influence on the underlying computing envi-

ronment; it thus induces side channel traces that can be logged by attackers to infer pri-

vate inputs. Previous SCA studies, from a holistic view, attempted to (manually) map

side channel logs to data bytes in media data (similar to how media software treats media

data) [265, 95]; reconstruction of media data in a per-pixel manner is thus error-prone and

likely requires expertise and manual efforts.
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Figure 3.2: Mapping between side channels and images via a low-dimensional joint man-
ifold MI,O = I ⇥O.

The success of manifold learning in tasks like image editing and cross-modality re-

construction [290, 289] led us to construct a joint, perception-level connection between side

channel logs and high-dimensional media inputs.2 Therefore, instead of deciding value of

each byte, reconstructing media data is recast into exploring the manifold of media data

that satisfies the perception-level combinatory constraints.

Overall, we view SCA as a cross-modality high-dimensional data reconstruction task

that is addressed with joint manifold learning in this work [289]. Aligned with the nota-

tions in Sec. 3.2, let the media software inputs be I; the attacker’s observation on executing

each input i 2 I can be represented as (view � P) : I ! O, where o 2 O denotes the obser-

vation of side channel traces. Let F be the composite function view � P. According to the

manifold hypothesis, we assume that I and O also lie in the unknown manifolds I and

O, respectively. As mentioned in our threat model (Sec. 3.2), we assume that side channel

observations depend on the inputs of media software; therefore, the entire joint dataset

{ii, oi} formed by the ith media input ii 2 I and the corresponding ith observation oi 2 O

lies in a joint manifold

MI,O = {(i, F(i))|i 2 I, F(i) 2 O}

2Perception-level connection means constraints on data bytes formed by perceptual contents (e.g., gender,
hair style) in media data are extracted from side channels.
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where (i, F(i)) is described with the regular high-dimensional coordinate system. Since I

and O also lie in the corresponding manifolds I and O, the data points in MI,O should be

equivalently described using an intrinsic coordinate system (z, g(z)). Hence, we assume

the existence of a homomorphic mapping ( fI , fO) over (z, g(z)) such that z = fO(o) and

g(z) = fI � F�1(o). fO maps side channel observation O onto the intrinsic coordinate z,

whereas fI maps high-dimensional media data I onto g(z). Note that g denotes the diffeo-

morphism (i.e., an isomorphism of two manifolds) between the I and O manifolds [289].

Hence, instead of computing F�1 = (view � P)�1 : O ! I to map the side channel ob-

servation back onto the media inputs, we leverage the joint manifold to constitute the

following composite function:

F�1(o) = f�1
I
� g � fO(o) (3.1)

i 2 I can thus be reconstructed using the inverse composite function f�1
I
� g � fO over

the joint manifold MI,O. Fig. 3.2 provides a summary and presents a schematic view of

how I and O of high-dimensional data are mapped via MI,O.

The feasibility of using neural networks, especially autoencoders, to facilitate para-

metric manifold learning has been discussed [289, 290, 103, 177]. Accordingly, we train an

autoencoder by encoding side channel traces O onto the latent space with encoder fq and

by generating media data I with decoder yq from the latent space. Therefore, Eq. 3.1 can

be learned in an end-to-end manner [289, 33]. Holistically, fq and yq correspond to fO and

f�1
I

, respectively, whereas g is implicitly constructed in the encoded latent space.

3.4 Framework Design

We describe the design of our autoencoder in Sec. 3.4.1. Sec. 3.4.2 clarifies the usage of

attention to localize code fragments inducing information leakage. Sec. 3.4.3 introduces

perception blinding to mitigate our SCA.
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Figure 3.3: Reconstructing media data of different types with a unified autoencoder frame-
work.

3.4.1 SCA with Autoencoder

We propose a general and highly-flexible design in which an autoencoder is used to fa-

cilitate SCA of various media data, including images, audio and text. The autoencoder

framework [101] defines a parametric feature-extracting function fq, named encoder, that

enables the projection of the input x onto a latent vector h = fq(x). Similarly, autoen-

coder frameworks also use yq as a decoder that reconstructs input x̂ from a latent vector

x̂ = yq(h). A well-trained autoencoder framework gradually identifies a parameter vector

q to minimize the reconstruction error as follows:

L(q) = Â
t

L(xt, yq � fq(xt))

where xt is a training sample. Minimal errors can be found with statistical methods like

stochastic gradient descent.

The first row of Fig. 3.3 depicts the workflow. We clarify that our focus is not to propose

novel model architectures; rather, we show that high-quality inputs can be synthesized

by assembling standard models, which indicates severity and effectiveness of our attack.

We now discuss the high-level workflow and present the model structures and training

details in Sec. 3.5. Given a logged side channel trace o 2 O, encoder fq(o) converts o
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into the corresponding latent representation. We prepare three decoders yi
q, ya

q , yt
q to

reconstruct these types of media data (i.e., image, audio, and text) from the encoded latent

representation. We pair encoder fq(o) with each y⇤q and train the assembled pipeline

for our customized objective functions L(q). Our proposed framework is task-agnostic.

Generating media data of various types requires only assembling corresponding decoders

to the unified encoder fq.

Encoder fq. A logged side channel trace will first be folded into a K⇥ N ⇥ N matrix (see

Table 3.3 for the detailed configuration of each trace). We then feed this matrix as the in-

put of encoder fq. The encoder fq comprises several stacked 2D convolutional neural net-

works (CNNs). For the current implementation, fq converts the high-dimensional inputs

into latent vectors of 128 dimensions, given that the dimensions of our media inputs are

all over 10K. Moreover, we find that increasing the dimension of latent vectors (i.e., from

128 to 256) does not make an observable improvement. This observation is consistent with

the manifold hypothesis [142], such that only limited “perceptions” exist in normal media

data. In contrast, reducing the number of dimensions (e.g., 32) makes the outputs (visu-

ally) much worse. However, users who strive to recover media data of lower-dimensions

can configure our framework with smaller latent vectors (e.g., 32 dimensions).

Fig. 2(a) shows that we enhance encoder fq with attention. Indeed, we insert one atten-

tion module between every two stacked CNN layers in the encoder. Attention generally

improves output quality of autoencoder [240]. More importantly, attention facilitates lo-

calizing program points of information leakage. We elaborate on Fig. 2(a) in Sec. 3.4.2.

Decoder y⇤q . We categorize the media data exploited by this study into two types: contin-

uous and discrete. Image and audio data are represented as a continuous floating-point

matrix and reconstructed by yi
q and ya

q in a continuous manner. In contrast, textual data

comprise word sequences, and because there is no “intermediate word,” textual data are

regarded as sequences of discrete values and handled by yt
q.

As shown in Fig. 2(b), we use a common approach to stacking 2D CNNs to design yi
q.

A 2D CNN has several convolutional kernels; each kernel focuses on one feature dimen-

sion of its input and captures the spatial information of this feature dimension. Images can

thus be reconstructed from vectors in the low-dimensional latent space with stacked 2D

CNNs, as each 2D CNN upsamples from the output of the previous layer. For audio data,
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we first convert raw audio into the log-amplitude of Mel spectrum (LMS), a common 2D

representation of audio data. This way, audio data are represented as 2D images (see some

examples in [9]), in which the x-axis denotes time and the y-axis denotes the log scale of

amplitudes at different frequencies. Herein, like yi
q, ya

q uses stacked 2D CNNs to process

each converted 2D image, gradually upsamples from the latent representation, and recon-

struct the LMSs of the audio data. Because the LMSs usually are not in square-shape, we

append a fully connected layer to transform the shape of the reconstructed LMSs. These

LMSs are then converted to raw audio losslessly.

Textual data, however, are reconstructed sequentially “word by word” due to their

discrete nature. As shown in Fig. 2(b), to reconstruct a sentence from the latent space

of a side channel trace o, a single word is gradually inferred based on words already

inferred from sentence i. Following a common practice of training sequence-to-sequence

autoencoders, we add a start-of-sequence (SOS) token before each sentence i and an end-

of-sequence (EOS) token after i. Then, given a side channel trace o that corresponds to

unknown text i, the trained decoder yt
q starts from the SOS token and predicts a word

w 2 i sequentially until it yields the EOS token. From a holistic perspective, the trained

model projects a sentence i into a low-dimensional manifold space of word dependency,

which facilitates the gradual inference of each word w on i.

Designing Objective Functions. As depicted in the first row of Fig. 3.3, for discrete data

(i.e., text), each decode step is a multi-class classification task where the output is classified

as one element in a pre-defined dictionary. Thus, we use cross entropy as the training

objective. For continuous data, we design the training objective Lq composing both explicit

and implicit metrics. We now introduce each component in detail.

Explicit Metrics A common practice in training an autoencoder is to explicitly assess the

point-wise distance between the reconstructed media input i0 and reference input i with

metrics such as MSE loss, L1 loss, and KL divergence [136, 54]. The autoencoder will be

guided to gradually minimize the point-wise distance Lq(i, yq � fq(o)) during training.

Nevertheless, a major drawback of such explicit metrics is that the loss of each data point

is calculated independently and contributes equally to update q and minimize Lq. Our pre-

liminary study [9] shows that such explicit metrics suffer from “over-smoothing” [212], a

well-known problem that leads to quality degradation of the reconstructed data.
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Table 3.1: Privacy-aware indicators. Table 3.3 introduces each dataset.

Dataset Indicator
CelebA Is the celebrity’s identity preserved?
ChestX-ray Is the disease information preserved?
SC09 Is the speaker’s identity preserved?
Sub-URMP Is the musical instrument’s type preserved?

Implicit Metrics Another popular approach is to assess the “distributed similarity” [212]

of reconstructed i0 and reference input i. Viewing the general difficulty of extracting the

distribution of arbitrary media data, a common practice is to leverage a neural discrim-

inator D. Discriminator D and decoder yq play a zero-sum game, in which D aims to

distinguish the reconstructed input i0 from normal media data i. In contrast, decoder yq

tries to make its output i0 indistinguishable with i to fool D. Although this paradigm

generally alleviates the obstacle of “over-smoothing” [212], it creates the new challenge

of mode collapse; that is, yq generates realistic (albeit very limited) i0 from any inference

inputs. From a holistic perspective, the use of a discriminator mainly ensures that the re-

constructed i0 is near i from a distribution perspective; no guarantee is provided from the

view of a single data point.

Privacy-Aware Indicators In addition to the two standard objective functions mentioned

above, we further take into account a set of privacy-aware indicators. As shown in Fig. 2(c),

we extend discriminator D such that it checks whether the reconstructed outputs preserve

the “privacy” in an explicit manner. Table 3.1 lists the privacy indicators used in our

framework, which correspond to exploited media data of different types. For instance, for

face photos (CelebA), we specify checking the identity. Hence, the enhanced discriminator

D serves as a classifier to check whether the identity of the person is preserved, which thus

forces decoder yq to decode the identity information in the zero-sum game. A specific

fully connected layer is appended to the discriminator D in accordance with each privacy

indicator.

Comparison with Generative Model-Based SCA [279]. One contemporary study [279]

uses generative models (e.g., GANs [88]) to conduct SCA towards image libraries by cap-

turing image distribution from side channels. Nevertheless, their work is particularly de-

signed to recover images instead of proposing a general and flexible framework to exploit

media software of various input types. In addition, we explicitly use privacy indicators
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when designing objective functions, while [279] focuses on polishing the visual appearance

of the reconstructed images.

high-dimensional data
close to manifold

corrupted data

clean data

<latexit sha1_base64="KqQqnuXiz3QQK1ahNaelJfbo3xw=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoseiF29WsLaQhrLZbtulm03YfRFK6M/w4kERr/4ab/4bN20O2jqwMMy8x86bMJHCoOt+O6WV1bX1jfJmZWt7Z3evun/waOJUM95isYx1J6SGS6F4CwVK3kk0p1EoeTsc3+R++4lrI2L1gJOEBxEdKjEQjKKV/G5EccSozO6mvWrNrbszkGXiFaQGBZq96le3H7M04gqZpMb4nptgkFGNgkk+rXRTwxPKxnTIfUsVjbgJslnkKTmxSp8MYm2fQjJTf29kNDJmEoV2Mo9oFr1c/M/zUxxcBZlQSYpcsflHg1QSjEl+P+kLzRnKiSWUaWGzEjaimjK0LVVsCd7iycvk8azuXdTd+/Na47qoowxHcAyn4MElNOAWmtACBjE8wyu8Oei8OO/Ox3y05BQ7h/AHzucPhuaRaQ==</latexit>

O

Figure 3.4: Denoising corrupted data during manifold learning.

Noisy Side Channel. Reconstructing media data from noisy side channels is of partic-

ular importance, because adversaries often face considerable noise in real-world attack

scenarios. Manifold learning features denoising by design, the schematic view of which

is presented in Fig. 3.4. Overall, manifold learning forces side channel traces O to concen-

trate near the learned low-dimensional manifold O, where a corrupted high-dimensional

data point õ (• in Fig. 3.4) should typically remain orthogonal to the manifold O [33]. Thus,

when the decoder yq learns to reconstruct media data i 2 I from the representations lying

on the joint manifold, corrupted õ can be fixed by first being projected onto the D in the

manifold for denoising; and i can then be reconstructed from the D [103].

3.4.2 Fault Localization with Neural Attention

Some studies have detected software vulnerabilities that lead to side channel attacks [73,

244, 37, 243]. However, we note that such studies typically use heavyweight program-

analysis techniques, such as abstract interpretation, symbolic execution, and constraint

solving. Thus, performing scalable program analysis of real-world media software could

prove a great challenge, given that such media software usually contains complex pro-

gram structures (e.g., nested loops) and a large code base. Furthermore, the primary fo-

cus of previous studies has been crypto libraries (e.g., OpenSSL [192]), whose “sensitive

data” are private key bytes or random numbers. In contrast, modeling potentially lengthy

media data with various strictly defined formats could impose a further challenge (e.g.,

symbolizing such complex input formats) that may require the incorporation of domain-

specific knowledge.
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Inspired by advances in program neural smoothing [222, 221] and SCA based on neu-

ral networks [279, 201, 124], we seek to overcome question “which program point leaks

side channel information” by answering the following question:

“Which records on a logged side channel trace contribute most to the recon-

struction of media data?”

Although answering the former question often requires rigorous and unscalable static

analysis, the second question can be addressed smoothly by extending the encoder fq

with attention [260], a well-established mechanism that improves the representation of

interest by telling the neural network where and upon what to focus. In particular, by

enhancing the autoencoder with attention, our framework automatically flags side channel

logs that make a primary contribution to input reconstruction. These logs are automatically

mapped to the corresponding memory access instructions. We can then manually identify

the corresponding “buggy” source code. For the last step, our current experiments rely on

symbol information in the assembly programs to first identify corresponding functions in

source code, and then narrow down to code fragments inducing input leakage.

Despite attention being a standard mechanism to boost deep learning models [240,

260], attention in our new scenario acts like a “bug detector” to principally ease local-

izing vulnerable program points. In contrast to program analysis-based approaches [73,

243, 244, 37], our solution is highly scalable and incurs no extra cost during exploitation.

Moreover, it analyzes software in a black-box setting that is agnostic to media software

implementation details or input formats.

Fig. 2(a) depicts the enhanced trace encoder with attention. An attention module (we

follow the design in [260] given its simplicity and efficiency) is inserted within every

two stacked CNN layers. Let the intermediate input of a CNN layer as C ⇥ H ⇥W,

the “Channel-Attention” module Achannel processes each segment of 1 ⇥ H ⇥W data

points from C channels and tells the encoder “where” to focus on by assigning different

weights to each segment. The “Spatial-Attention” module Aspatial processes each seg-

ment of C⇥ 1⇥ 1 records and advises the encoder “what to locate” by assigning different

weight on each record. From a holistic perspective, attention module Achannel projects a
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coarse-grained focus on potentially interesting segments, while Aspatial further identifies

interesting side channel records in a segment.3

3.4.3 Mitigation with Perception Blinding

This section presents mitigation against manifold learning–enabled SCA (Sec. 3.4.1). Con-

sistent with our attack and fault-localization, mitigation is also agnostic to particular me-

dia software and input types. We only need to perturb the media input I with pre-defined

perception blinding masks.

We first introduce blinding images of the human face, and then explain how to extend

perception blinding toward other input types.

A Working Example. As introduced in Sec. 3.2, manifold learning casts images of the

human face into a set of perceptually meaningful representations; typical representations

include hair style, age, and skin color. Hence, we define a universal mask imask of human

face, such that by perturbing arbitrary images i of human face with imask, the produced

output iblinded will be primarily projected to the same intrinsic coordinates zmask in the

manifold space M. To use perception blinding, users only need to pick one mask imask

to blind all input images i. Consequently, adversaries are restricted to the generation of

media data perceptually correlated to zmask. Particularly, to perturb i, we add imask as

follows:

iblinded = a⇥ i� b⇥ imask

where we require b � a and a + b = 1. Perceptual contents of imask thus “dominates” the

projected low-dimensional perceptions in M. Let P(iblinded) be the output of media soft-

ware after processing iblinded, and the user can recover the desired output by subtracting

P(imask) from the output as follows:

P(iprivate) =
1
a
⇥ (P(iblinded) b⇥ P(imask))

3It is well accepted that a CNN is organized in the form of num_channels⇥width⇥height. Therefore,
we name two attention components as Achannel and Aspatial , which are aligned with the convention.
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Table 3.2: Side channels derived from a memory access made by victim media software
using address addr.

Side Channel Name Side Channel Record Calculation
CPU Cache Bank Index [271] addr � L where L, denoting cache bank size, is usually 2 on modern computer architectures.
CPU Cache Line Index addr � L where L, denoting cache line size, is usually 6 on modern computer architectures.
OS Page Table Index [95] addr & (⇠ M) where M, denoting PAGE_MASK, is usually 4095 on modern computer architectures.

Table 3.3: Statistics of side channel traces and media software. There is no overlapping
between training and testing data.

Dataset Information Training Split Testing Split Trace Length Matrix Encoding Media Software
CelebA [168] Large-scale celebrity face photos 162,770 19,962 338, 123 ± 14, 264 6⇥ 256⇥ 256 libjpeg (ver. 2.0.6)
ChestX-ray [246] Hospital-scale chest X-ray images 86,524 25,596 329, 155 ± 10, 186 6⇥ 256⇥ 256 LOC: 103,273
SC09 [249] Human voice of saying number 0–9 18,620 2,552 1, 835, 067 ± 103, 328 8⇥ 512⇥ 512 ffmpeg (ver. 4.3)
Sub-URMP [144] Sound clips of 13 instruments 71,230 9,575 1, 678, 485 ± 36, 122 8⇥ 512⇥ 512 LOC: 1,236,079
COCO [160] Image captions 414,113 202,654 77, 796 ± 14 6⇥ 128⇥ 128 hunspell (vers. 1.7.0)
DailyDialog [155] Sentences of daily chats 11,118 1,000 77, 799 ± 102 6⇥ 128⇥ 128 LOC: 39,096

where P(iprivate) is the desired output, and P(imask) can be pre-computed. � and  di-

rectly operate i 2 I of various formats, as will be defined later in this section. Because

typical operations of media software (e.g., compression) are independent of the perceptual

meaning of media inputs, the proposed blinding scheme introduces no extra hurdle for

media software. In contrast, as shown in Sec. 3.6.3, SCA based on manifold learning can

be mitigated in a highly effective manner.

Requirement of imask. Comparable to how RSA blinding is used to mitigate timing chan-

nels [38], perception blinding is specifically designed to mitigate manifold learning-based

SCA. We require that imask must lie in the same low-dimensional manifold with the private

data. Thus, imask must manifest high perception correlation with media software inputs

iprivate 2 I. This shall generally ensure two properties: 1) the privacy (in terms of cer-

tain perceptions, such as gender and skin color) in iprivate can be successfully “covered”

by imask, and 2) imask imposes nearly no information loss on recovering P(iprivate) from

P(iblinded) except a mild computational cost due to mask operations. Considering Fig. 3.4,

when violating this requirement of perception correlation, for instance, such as by using ran-

dom noise to craft imask, the intrinsic coordinate of the original input (D) can likely drift

to a “corrupted input” (•) that is mostly orthogonal to the manifold of I. As explained

in Sec. 3.4.1, due to the inherent noise resilience of manifold learning, crafting such a cor-

rupted input can cause less challenge to attackers when recovering i from the low-level

manifold space. Although iprivate is of low weight in iblinded, it can still be reconstructed to

some extent, as will be shown in Fig. 3.8 of Sec. 3.6.3.
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Extension to other data types. For image and audio data, we recommend using a normal

image i 2 I as the mask imask. Intuitively, by amplifying imask with a large coefficient b in

generating iblinded, imask is presumed to dominate the perceptual features in iprivate. Hence,

we stealthily hide the private perceptual features of iprivate in iblinded, whose contents are

difficult for adversaries to disentangle without knowing imask. For textual data, we rec-

ommend inserting notional words of high frequency to blind iprivate. We present empir-

ical results on how various choices of imask can influence the mitigation effectiveness in

Sec. 3.6.3.

Implementation of Operators� And . For image and audio data, we use floating-point

number addition and subtraction to implement � and  . Textual data are discrete: con-

sidering that media software often manipulates textual data at the word level, simply

“adding” or altering words in the input text will likely trigger some error handling rou-

tines of the corresponding media software, which is not desirable. Sec. 3.4.1 clarifies that

our autoencoder framework essentially captures the “word dependency” between words

in a sentence; accordingly, we define the � operation as inserting words in a sentence,

whereas the operation is implemented to remove previously inserted words. As shown

in Sec. 3.6.3, this strategy effectively breaks the word dependency in the original text.

3.5 Attack Setup

We leverage three high-resolution side channels, as shown in Table 3.2. As clarified in our

threat model (Sec. 3.2), these side channel are commonly adopted in many existing works

in this field. We clarify that exploiting new side channels is not our focus. We use common

side channels in the era of cloud computing, implying the severity and effectiveness of our

proposed attack. The resolution when performing attacks on those side channels are 4B,

64B, and 4096B, respectively. Higher-resolution side channels should enable recovering

media data with more vivid details. Media data of better quality, however, does not nec-

essarily enhance privacy stealing (e.g., determining whether chest X-Ray images indicate

pneumonia). See quantitative evaluation of privacy inference in Sec. 3.6.1.

For evaluation in Sec. 3.6, we use Pin [170] to collect memory access traces and map

each trace into three side channel traces following mapping rules in Table 3.2. Sec. 3.6.4
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further demonstrates attack in an userspace-only scenario, i.e., we collect cache side chan-

nels via Prime+Probe [237].

Media Software and Media Dataset. Table 3.3 reports evaluated media software and

statistics of side channel traces. We pick media software following previous works [265,

95, 279]. All media software are complex real-world software, e.g., FFmpeg contains 1M

LOC. We prepare two common datasets for each media software to comprehensively eval-

uate our attack. All datasets contain daily media data that, once exposed to adversaries,

would result in privacy leakage. We compile all three media software into 64-bit binary

code using gcc on a 64-bit Ubuntu 18.04 machine.

Implementation

We implement our framework in PyTorch (ver. 1.4.0). We use the Adam optimizer with

learning rate as 0.0002 for all models. Batch size is 64. For continuous decoders, we set

the loss function as lLexlicit + Limplicit + Ân
i=1 Lprivacy, where l = 50 and n is the number

of privacy-aware indicators. We ran experiments on Intel Xeon CPU E5-2683 with 256

GB RAM and one Nvidia GeForce RTX 2080 GPU. For experiments based on Pin-logged

traces (Table 3.3), the training is completed at 100 epochs and takes less than 24 hours.

For experiments using Prime+Probe-logged traces, training takes 9 to 27 hours (after

excluding preprocessing time; see details in [9]). Table 3.3 reports the dataset size and

training/testing splits. See our released codebase [9] for result verification.

3.6 Evaluation

We present the SCA exploitation toward media software in Sec. 3.6.1. We discuss program

points that induce information leakage in Sec. 3.6.2, and demonstrate the effectiveness of

perception blinding in Sec. 3.6.3.

3.6.1 Side Channel Attack

This section reports key evaluation results. Full setups and evaluation results are present

in our artifact [9].
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Qualitative Evaluation

This section presents and compares the reconstructed media data with the reference in-

puts in terms of various settings. Fig. 3.5 demonstrates that the reconstructed images

and the references show highly aligned visual appearances, including gender, eyebrow

shapes, skin color, and hair styles. Images constructed from different side channels man-

ifest comparable visual quality. Fig. 3.6 further reports the text reconstruction results of

daily dialogs by comparison with the reference inputs. The reconstructed sentences, al-

though are not fully aligned with the reference, still retain considerable correct contents

and the original intents.

Reference inputs Cache bank Cache line Page table

Figure 3.5: Qualitative evaluation of CelebA.

Reference InputReconstructed Text
I think it would be better to have a good 
babysitter here . It might even be for two or 
three days .

I think it ' be better for find a good 
babysitter here . It ' be cost , an or three 
days .

She has a bad cold , and we don ' t want to take 
her with us . But we don ' t know who can stay 
with her .

She is a single cold , and it don ' t want to 
take care to us . But we don ' t like how can 
stay with our .

I ' m sorry to hear it . What ' s wrong with her ?I ' m sorry , say that . What ' s wrong with 
her ?

I don ' t want to insult Jill or her mother . I think 
Jill maybe could do it . But I ' d rather have 
someone a little older .

I <UNK>' t want to insult Jill or her 
brother . I think Jill , could be it . But I ' ll
rather have some to little older .

Figure 3.6: Qualitative evaluation of DailyDialog. We mark inconsistent reconstructions.

We interpret the overall qualitative evaluation results, in terms of images and text,

as highly encouraging. We present reconstructed chest X-ray images, sub-URMP/SC09
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Table 3.4: CelebA face image matching evaluation.

Cache bank Cache line Page table
same face 45.4% 43.5% 44.5%
non-face 2.0% 2.0% 2.1%

Table 3.5: SC09 human voice matching evaluation.

Cache bank Cache line Page table
ID accuracy 29.1% 28.8% 23.2%
Content accuracy 21.6% 24.2% 22.6%

Table 3.6: Text data inference evaluation.

Dataset Cache bank Cache line Page table Baseline
COCO Caption 43.4% 42.6% 42.1% 0.0000%
Daily Diolgue 38.1% 37.4% 37.6% 0.0183%

audio data, and COCO text at [9]. Encouraging results can be consistently observed.

Quantitative Evaluation

Image Data. For CelebA, we leverage commercial face recognition APIs, Face++ [11], to

decide whether a reconstructed face and its reference input can be considered as from the

same person with over 99.9% confidence scores. We thus launch a de-anonymization attack

of user identity with reconstructed images. Table 3.4 reports the evaluation results; for all

three exploited side channels, more than 43% of the reconstructed faces can be correctly

matched to their reference inputs, showing a high success rate of face matching. Only

2% of the reconstructed images are deemed as “non-face,” which indicates the negligible

chance of generating corrupted faces. We report the quantitative evaluation of chest X-ray

in [9].

Our attack achieves plausible accuracy. The quantitative results are not noticeably af-

fected by differences in side channels, which indicates that face matching evaluation ex-

tracts representative attributes from images for matching. As mentioned in Sec. 3.5, the

three side channels manifest different resolutions: although higher-resolution side chan-

nels enable reconstruction of more vivid images, this does not necessarily promote privacy

stealing. However, enabled by manifold learning-based autoencoder and our objective

functions which explicitly account for privacy indicators (Table 3.1), privacy-related fac-
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Table 3.7: Localized program points in libjpeg.

Module #Functions Frequency Sample Func. Names

MCU 2 7,060 encode_mcu_huff
decode_mcu

Transform 1 5866 jtransform_execute_transform

IDCT 13 4,027 jpeg_idct_15x15
jsimd_idct_ifas

Upsample 15 2,033 h2v1_merged_upsample
h2v1_fancy_upsample

Decompress 6 1,352 tjDecompress2
tjDecompressHeader3

Dump 4 8,23 write_bmp_header
start_input_bmp

tors are extracted in the reconstructed images across side channels of various resolutions.

Similar observations are made for media data of other formats; our discussion follows.

Audio Data. Table 3.5 reports the voice matching results for SC09. Using the recon-

structed voice commands (number 0–9), we train two classifiers for speaker identity and

command 0–9 classification.4 The evaluation results largely outperform the baseline (i.e.,

random guessing). With a total of 184 speakers, we achieve greater than 20% accuracy

in matching correct speaker identities across all settings. We also exceed 20% accuracy

in content matching (0–9). We observed decreasing accuracy in speaker identity match-

ing, which is reasonable given that the cache bank side channel only “kicks off” two least

significant bits, while cache line and page table side channels retain less amount of in-

formation. We also report the matching rate of musical instruments in [9], which yields

consistent and promising findings.

Text Data. To reconstruct text data, we gradually predict each word based on previously

predicted words in the sentence. Hence, for the quantitative evaluation, we adopt an

attack strategy mostly aligned with [41] to measure the average accuracy of word-level

prediction accuracy. Table 3.6 reports the evaluation results for the COCO and Dailydialog

datasets. To prepare a baseline for comparison, we feed a random input to the decoder

yq instead of using the latent vector of an input side channel trace. As expected, our

exploitation of both datasets achieves much greater accuracy than the baseline regarding

all side channels.
4Please refer to [9] for details of these classifiers.
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1 static void idct32(int �coeffs, int col_limit) {
2 int limit = min(H, col_limit + 4);
3 for (int i = 0; i < H; i++)
4 TR_32(src, src, H, H, limit);
5 }
6 static void TR_32(int �dst, int �src, int dstep,
7 int sstep, int end) {
8 int o_32[16] = { 0 };
9 for (int i = 0; i < 16; i++)

10 // loading pre�calculated matrix ‘‘transform’’
11 for (int j = 1; j < end; j += 2)
12 o_32[i] += transform[j][i] * src[j * sstep];
13 // TR_16 calls TR_8, and TR_8 calls TR_4.
14 TR_16(e_32, src, 1, 2 * sstep, SET, end/2);
15 }

Figure 3.7: Vulnerable code components in FFmpeg. We mark variables depending on
FFmpeg’s input in red, and bold input-dependent memory accesses (line 12).

Table 3.8: Localized program points in FFmpeg.

Module #Functions Frequency Sample Func. Names
Encode 50+ 10K+ encode_frame
Decode 50+ 10K+ decode_frame
Filter 50+ 10K+ filter_frame

IDCT 10+ 5K+ idct_idct_32x32_add_ce
iadst_idct_16x16_add_c

Dump 10+ 5K+ wav_write_trailer
wav_write_header

3.6.2 Program Point Localization

We present a representative buggy code fragment of FFmpeg in Fig. 3.7. We present repre-

sentative buggy code localized in libjpeg and Hunspell in [9]. We also list all localized

program points in term of assembly code in [9].

libjpeg. We analyze 2,000 media inputs from the CelebA and Chest X-ray datasets. Ta-

ble 3.7 reports the localization results of libjpeg. For instance, we identify 7,060 side

channel points from 4,000 traces, which can be mapped back to two functions (encode_-

mcu_huff and decode_mcu) performing minimum coded unit (MCU)-related opera-

tions. Similarly, we find information leakage points in modules related to decompression,

IDCT, and also output dumping.

47



Table 3.9: Localized program points in Hunspell.

Module #Functions Frequency Sample Func. Names
Interface 1 1,333 pipe_interface

Parser 4 1,230 next_token, alloc_token
get_parser, TextParser::init

Look up 2 213 check, insertion_sort

Insert 5 1,076 putdic, allocate_string
chenc, allocate_char_vector

Original Mask Masked Recovered Reconstructed Masked Recovered Reconstructed Masked Recovered Reconstructed

α = 0.05 α = 0.10 α = 0.30

Noise
Mask

Non-face
Mask

Face #1
Mask

Face #2
Mask

Figure 3.8: Qualitative evaluation results of perception blinding.

Table 3.3 shows that one trace has approximately 400K data points. In other words,

Table 3.7 reveals that a tiny portion of “informative” points on a side channel trace make a

primary contribution to information reconstruction. Given an image compressed in JPEG,

libjpeg decompresses the image into a bitmap. It is pointed out that the decompres-

sion process introduces side channels. IDCT-related functions that were noted by [265]

are automatically re-discovered by us. In addition, we identify functions in other image

transformation routines (e.g., MCU, upsampling) and output dumping routines that leak

inputs. We manually inspected the corresponding implementation of libjpeg and con-

firmed our findings. Note that our approach is automated and treats the entire libjpeg

software as a blackbox, whereas previous studies [265, 95, 141] could rely on expert knowl-

edge to first localize the vulnerable program points before launching SCA.

FFmpeg. We use 2,000 inputs from SC09 and Sub-URMP as the inputs of FFmpeg. Our

findings, as reported in Table 3.8, can be mapped to five modules of FFmpeg, each of

which contains many functions. FFmpeg processes audio inputs with audio sampling
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(the sampling frequency is set as 4,000 in our experiments). Fig. 3.7 presents a vulnera-

ble program component in the IDCT module of FFmpeg where the input “taints” certain

variables (marked in red) and eventually influences the memory accesses at line 12. Given

different input values, different memory cells are visited at line 12, resulting in access to

different cache units or page table entries. In addition, TR_32, TR_8 and TR_4 also suf-

fer from similar patterns (line 14). To the best of our knowledge, side channel issues on

FFmpeg are rarely studied, but the findings in FFmpeg are conceptually similar to other

media software; for example, IDCT algorithms and output dumping in both FFmpeg and

libjpeg are flagged as vulnerable by us.

Hunspell. We use 2,000 inputs from each dataset (i.e., DailyDialog and COCO) to run

Hunspell and analyze the logged side channels. Table 3.9 reports the results, where

information leakage points are found from the interface, parser, and also spell checking

. In fact, previous works [265, 141] have pointed out side channel issues of Hunspell.

Hunspell performs spell check, where a dictionary of words is maintained as a hash ta-

ble. Hunspell iterates each word w in the input sentence to check if w is in the hash table,

thus deciding the correctness of its spelling. When checking each w, Hunspell computes

the hash value of w and looks up the corresponding hash bucket of words. This would

lead to a sequence of memory accesses, which can be potentially used to map back to word

w. Note that while previous works attacking Hunspell assume the knowledge of the dic-

tionary [265, 141] before attack, such pre-knowledge is not needed for our attack. Instead,

we use side channel traces and their corresponding sentences fed to Hunspell as the

training data to implicitly learn a mapping in the low-dimensional joint manifold space.

[265, 141] reports that functions lookup and add_word primarily leak inputs. Our man-

ual confirmation shows that our findings (e.g., putdic, chenc, check, insertion_-

sort) indeed invoke lookup and add_word functions. We also find that the parser and

interface (we use Linux utility echo to feed Hunspell) of Hunspell also influence side

channels, both of which are not disclosed by previous works.

Confirmation with the Developers. We have reported our localized program points to

the developers. By the time of writing, the FFmpeg developers confirmed our findings.

Nevertheless, they mentioned that software-level fixing is undesirable, given the difficulty

of writing side channel-free code and the incurred extra performance penalty. From his
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perspective, OS-level or hardware-level fixing seems more practical.

3.6.3 Mitigation with Perception Blinding

We benchmark the mitigation effectiveness in terms of quantitative and qualitative anal-

ysis. We also discuss how different masks can influence the mitigation.

Qualitative Evaluation

We report qualitative evaluation by comparing the reference inputs with the reconstructed

inputs after applying blinding. Due to the limited space, Fig. 3.8 only reports the percep-

tion blinding over a private face image iprivate in terms of different settings. The original

image iprivate is presented in the “Original” column, and applied perception masks are

presented in the “Mask” column. For each masked image iblinded, the adversarial recov-

ered images are presented in the “Reconstructed” columns, and the final media software

outputs after unblinding are given in the “Recovered” columns.

“Noise mask” (the first row) and “non-face mask” (the second row) do not seem help-

ful in blinding iprivate because features such as face orientation are still preserved in the

reconstructed images. However, the use of real face images as the mask, as shown in the

third and fourth columns, gives promising results to blind key perceptual-level contents

like hair color and skin color. Overall, after blinding, the adversary-reconstructed images

seem to show a correlation with imask instead of iprivate. This is intuitive; as clarified in

Sec. 3.4.3, a large coefficient b is assigned to imask such that the perception contents of

imask largely determine the projected intrinsic coordinate in the manifold. This way, the

reconstructed images incline to manifest the perception of imask.

Additionally, although a small a value (e.g., 0.05) introduces a non-trivial amount of

noise in the final output, outputs of much better quality can be recovered when a is set

to 0.10 or even higher. We thus recommend that users adopt a reasonably high a when

constituting iblinded. More reconstructed cases are given in the artifact [9].
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Table 3.10: Face matching results after blinding in terms of (cache bank/cache line/page
table).

Mask a = 0.05 a = 0.1 a = 0.3
Noise 27.5/28.6/27.8% 25.2/26.9/28.2% 26.6/27.5/29.0%
Non-face 28.8/28.8/26.5% 26.2/27.6/27.4% 28.7/31.4/26.2%
Face#1 1.4/1.2/2.4% 1.8/1.4/2.7% 2.0/1.5/3.1%
Face#2 0.6/1.3/1.6% 0.7/1.7/1.9% 1.2/1.6/2.2%

Table 3.11: Mitigating COCO text inference attack in terms of (cache bank/cache line/-
page table). a = 0.05, a = 0.1, a = 0.3 denote each word are appended with 19, 9, and 2
masks, respectively.

Mask a = 0.05 a = 0.1 a = 0.3
“man” 0.39/0.40/0.36% 0.68/0.69/0.67% 2.46/2.45/2.13%
“sitting” 0.16/0.16/0.22% 0.30/0.30/0.39% 1.36/1.40/1.39%

Quantitative Evaluation

We launch quantitative evaluation following the procedures in Sec. 3.6.1. The perception

blinding of “Noise” and “Non-face” masks, as shown in Table 3.10, reduces the average

success rates of face matching from approximately 44% (Table 3.4) to 27.4%, but still has

non-negligible privacy leakage. Compared with “Face#1” and “Face#2”, Fig. 3.8 shows

that images reconstructed from “Noise”- and “Non-face”-blinded images manifest better

visual similarity with the reference inputs. In addition, Table 3.10 reports that “Face#1”

and “Face#2” exhibit much better mitigation (less than 3.1% matching rates) in terms of

quantitative metrics. We find that the value of a does not notably influence the results

but is still positively correlated with privacy leakage. Overall, for images, we mask the

perception contents using blinding. However, the privacy indicator for this scenario, i.e.,

celebrity’s identity, is not simply a linear sum of all perception contents. Overall, iden-

tity recognition depends on subtle features of a human face: changing a not necessarily

impedes capturing informative features.

Table 3.11 reports the mitigation results of Hunspell using COCO. We use two no-

tional words of high frequency, “man” and “sitting”, for blinding. We insert N notional

words after each word in an input sentence, where N ( 1
a � 1) is 19, 9, and 2 given different

a. When more notional words are used, we observe a higher decrease in inference accu-

racy. However, with blinding, the inference accuracy decreases from more than 40.0% (see
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Table 3.12: Quantitative evaluation results using cache side channels logged by
Prime+Probe. We also provide the processing time (ms) when launching Prime+Probe
(normal! with Prime+Probe).

FFmpeg & SC09 voice matching
Intel AMD

L1I Cache 12.6% (36! 580) 11.6% (10! 420)
L1D Cache 81.8% (36! 590) 15.7% (10! 420)

libjpeg & CelebA face matching/non-face
Intel AMD

L1I Cache 38.0/0.85% (5! 18) 35.9/1.2% (2! 22)
L1D Cache 36.9/0.80% (5! 20) 33.9/0.90% (2! 24)

Hunspell & DDialog text matching
Intel AMD

L1I Cache 33.9% (60! 130) 33.2% (23! 60)
L1D Cache 32.2% (60! 130) 31.8% (23! 60)

Table 3.6) to less than 2.5% (close to baseline; see Table 3.6) even two notional words are

inserted after each normal word. Different from masking images, the privacy of text is as-

sessed by word dependency (introduced in Sec. 3.6.1). a decides #notional words inserted

to break word dependency. Therefore, the results changes notably w.r.t. values of a.

In sum, our quantitative evaluation demonstrates the effectiveness of our proposed

mitigation despite differences in the media data formats or exploited side channels. See

our artifact [9] for more results; for instance, blinding chest X-ray images can drastically

reduce the disease diagnosis F1 score from an average of 0.73 to less than 0.1.

3.6.4 Real-World Attack with Prime+Probe

This section explores collecting cache access traces via a practical cache attack, Prime+Probe

[237, 284], in userspace-only scenarios. To do so, we conduct an end-to-end experiment, by

leveraging Mastik [269], a micro-architectural side channel toolkit, to perform Prime+Probe

and log victim’s access toward L1D and L1I cache. We use Linux taskset to pin the vic-

tim software and the spy process on the same CPU core. We now report key setup and

results in this section.

We assume that attackers know when the victim media software begins and ends to

process an unknown input [237]. The spy process primes and probes the cache. Tech-

nically, there is another “coordinator” process on the same core which computes victim

process’s cache activities and logs the cache side channels to disk. Nevertheless, according
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to our observation, this coordinator process has generally consistent cache access patterns,

thus its mostly fixed cache access does not interfere with our well-trained autoencoder.

We launch experiments on both Intel Xeon CPU and AMD Ryzen CPU. The thresholds

of deciding cache hit and cache miss are 120 CPU cycles on Intel Xeon CPU and 100 CPU

cycles on AMD Ryzen CPU. Prime+Probe is performed in the following manner:

PRIME: The spy process fills all cache sets.

IDLE: The attacker logs the access time of all cache sets for the previous Prime+Probe

iteration. As a result, the idle phase interval equals the duration of performing one file I/O

operation. Meanwhile, the cache is utilized by the victim.

PROBE: The spy process refills all cache sets and times the duration to refill the same

cache sets to learn how victim accesses cache sets.

For a cache set, the logged cache status flip, from hit to miss, indicates at least one

cache access of victim. We are thus particularly interested in logging such status flip.

We name such cache status flips as “cache activity” in the rest of this chapter. Whenever a

cache activity is observed, we record the cache activities of the all cache sets into a vector

V, whose length equals to the number of cache sets. V[i] = 1 indicates there is a cache

activity in i-th cache set. In other words, the i-th cache set is accessed at least one time

by the victim. If no cache activity is observed from any cache set, we omit to generate a

new V. See full details of this end-to-end attack in our artifact [9].

The quantitative evaluation results, as reported in Table 3.12, are generally encourag-

ing. Attacks toward libjpeg and Hunspell manifest high accuracy comparable with

attacks over Pin-logged traces (Sec. 3.6.1). While Prime+Probe logs relatively noisier

cache side channels, our attack shows promising noise resilience, as trace encoder (and

manifold learning by design) is noise resilient. Further, the logged side channels are sparse;

given only a few records are secret-dependent, noise introduced by Prime+Probe and

other workloads do not primarily impede our attack.

FFmpeg reports high attack accuracy (over 80%) on Intel L1D cache but lower accuracy

for other settings. As in Table 3.13, the logged side channel traces are unstable (and chal-

lenging to comprehend), where stddev is about half of the average trace length. To verify

the high attack accuracy on Intel L1D cache, we manually checked all the reconstructed
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Table 3.13: Statistics (mean±stddev) and matrix encoding of cache side channel traces
logged by Prime+Probe. Each trace consists of a 64-element vector sequence. The #train-
ing and #test splits in each setting are the same as those shown in Table 3.3.

libjpeg(⇥8) FFmpeg(⇥4) Hunspell(⇥8)
Intel AMD Intel AMD Intel AMD

L1I Cache 2719 ± 745 1114 ± 290 44315 ± 23374 7013 ± 2540 4834 ± 1788 1865 ± 432
1⇥ 256⇥ 256 1⇥ 256⇥ 256 8⇥ 512⇥ 512 2⇥ 512⇥ 512 4⇥ 256⇥ 256 2⇥ 256⇥ 256

L1D Cache 780 ± 137 5750 ± 931 8837 ± 3050 46698 ± 35163 3739 ± 164 9732 ± 1498
1⇥ 256⇥ 256 4⇥ 256⇥ 256 2⇥ 512⇥ 512 8⇥ 512⇥ 512 4⇥ 256⇥ 256 8⇥ 256⇥ 256

2,552 audio clips (also uploaded at [9] for reference). The reconstructed audio clips on In-

tel L1D cache manifest high quality. However, while the original audio clips of the same

class are produced by different persons (and sound very different), all reconstructed au-

dio clips of the same class sound indistinguishable. This indicates that the trained model

stealthily simplifies the task of reconstruction into a task of ten class-conditional genera-

tion (recall this dataset has “0–9” labels). We then manually checked the collected traces:

we find that for this particular case, Intel L1D cache “amplifies” the distance of inter-class

traces while reduces the distance of intra-class traces. As a result, intra-class differences

are not well learned using training data. However, since our quantitative metrics only

check if the reconstructed audio can be classified correctly, the attack accuracy is high,

indicating privacy leakage. We use attention (Sec. 3.4.2) and compared all the localized

code components contributing side channels: we report that localized functions are the

same on Intel/AMD CPUs. However, they manifest different frequencies, which result in

this subtle model decaying. We confirm that this stealthy issue only occurs for this case.

To solve this issue (and therefore reconstruct diverse outputs within the same class), users

can opt for more complex models or larger training data, if needed.

Overall, inspired by recent work [250] exploring timing-based microarchitectural side

channels, we deem it an interesting future work to benchmark the microarchitectural side

channel differences. Our tool can automatically check whether side channels are informa-

tive enough to reconstruct secrets, when it largely outperforms the baseline.

We report the slowdown incurred by Prime+Probe attack in Table 3.12. Overall, me-

dia software are highly complex, and processing media data can usually induce a large

volume of cache accesses. This way, frequent cache misses due to Prime+Probe can

cause a reasonably high slowdown.
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Reference
inputs

Reconstructed
on L1 I cache

Intel Xeon CPU

Reconstructed
on L1 D cache

AMD Ryzen CPU

Figure 3.9: Reconstructed images on L1 cache of Intel Xeon and AMD Ryzen CPU. We
can observe highly correlated visual appearances, including gender, face orientation, skin
color, nose shape, and hair styles.

Table 3.14: Attack PathOHeap.

Function IDCT MCU
w/o ORAM 40.3% 38.0%
with ORAM 0.2% 0.2%

Qualitative Evaluation Results. Fig. 3.9 reports reconstructing CelebA face photos on

different CPUs. We interpret the reconstruction results as generally promising: a consid-

erable number of visual perceptions are faithfully retained in the reconstructed images,

which include gender, face orientation, skin color, nose shape, and hair styles. There is a

bit quality degradation on some images, for instance, facial details (e.g., the appearance

of teeth) are not always precisely aligned with reference inputs. However, we emphasize

that images reconstructed under four settings all manifest comparable visual quality, in-

dicating high feasibility of applying our framework on the basis of commonly-used side

channels. The qualitative results are also consistent with results reported in Table 3.12 —

though the attack is launched on different CPUs and different caches, privacy leakage is

steadily notable.

3.6.5 Mitigation Using ORAM

Besides perception blinding, this section assesses other mitigations. Existing mitigations

aim at adding randomness, making it constant, or directly masking inputs. Nearly all

of them are particularly designed to protect crypto software [234, 59, 38]. Raccoon [208]
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proposes general mitigation using software obfuscation; however, its implementation is

not available. That said, oblivious RAM (ORAM) [86] conceal memory access sequences

of a program by continuously shuffling data as they are accessed. We study whether

a representative ORAM, PathOHeap [225], can mitigate our attack. Due to the limited

space, we report the key evaluation results in Table 3.14. PathOHeap takes several hours

to process one memory access made by libjpeg. We thus focus on two critical functions

localized by our framework (see Sec. 3.6.2), IDCT and MCU, separately.5 We measure attack

success rates with and w/o first converting memory traces using PathOHeap.

Cache line side channels derived from either IDCT or MCU are sufficient for attack.

Nevertheless, ORAM eliminates information leak: memory access traces, after being pro-

cessed by PathOHeap, do not depend on input images. We report that our autoencoder

does not even reach convergence during training, and the reconstructed images (using

poorly trained autoencoder) show indistinguishable and meaningless visual appearances.

The non-zero result (i.e., 0.2%) is because that many face photos look like an “average”

face. In other words, 0.2% implies the baseline of face matching.

Comparison. PathOHeap is very costly: while libjpeg can process an image within

100ms, PathOHeap takes several hours to convert the corresponding memory trace. The

obfuscator, Racoon [208], has an average overhead of 16.1⇥. In contrast, perception-

blinding delivers negligible extra cost (i.e., processing masked data using media software

once) albeit its mitigation is specific for manifold learning-based SCA. This underlines the

key novelty of our technique.

3.6.6 Noise Resilience

We have discussed the general immunity to noise of manifold learning in Fig. 3.4. This

section empirically assesses our attacks under various scenarios where noise is introduced

in side channels. We summarize our noise insertion schemes in Table 3.15. The first three

schemes are launched to mutate cache line access traces logged by Pin, whereas the latter

three mutate the cache set hit/miss records logged via Prime+Probe. NA means no noise

is inserted, whereas Low/High denotes to what extent side channel logs are perturbed.

5Focusing functions with known information leakage (i.e., IDCT) [265, 95] demonstrates a “white-box”
attacker using our technique.
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Table 3.15: Quantitative evaluation results (same face/non-face) of face images recon-
structed from noisy side channels.

Setting Noise NA Low HighInsertion Scheme
Pin

logged
trace

Gaussian 43.5/2.0% 33.8/2.1% 28.0/1.5%
Shifting 43.5/2.0% 42.9/1.7% 39.1/1.8%
Removal 43.5/2.0% 30.0/1.9% 29.3/4.3%

Prime+Probe
logged trace

Leave out 36.9/0.8% 36.8/1.1% 36.8/1.1%
False hit/miss 36.9/0.8% 36.4/1.2% 36.1/1.2%
Wrong order 36.9/0.8% 36.8/1.0% 36.7/1.0%

Workload under
Prime+Probe

Bzip2 36.9/0.8% 27.6/1.0%
Victim1 36.9/0.8% 30.7/1.1%
Victim2 36.9/0.8% 29.0/1.0%

We also benchmark how real-world workload, i.e., by launching bzip2 or another victim

software (e.g., libjpeg) on the same CPU core, can undermine our attack. Victim1 and

Victim2 represent launching another victim software on the same core and processing the

same or different inputs.

We only report the quantitative evaluation results of libjpeg on CelebA in Table 3.15.

See our artifact [9] for other quantitative and qualitative results: despite the applied noise,

perceptual features are still retained in the reconstructed data (e.g., face photos), illustrat-

ing the feasibility of privacy stealing under noisy scenarios.

The reconstructed images are more resilient toward Shifting. Removal and Gaus-

sian noise, by extensively leaving out or perturbing data points on the logged trace (e.g.,

Removal/High removes half records on a trace), show greater influence on data recon-

struction. As for noise inserted in Prime+Probe logged side channel records, none of

them primarily affect the attack accuracy. We note that Prime+Probe logged side chan-

nel traces, even without applying these noise insertion schemes, are of high stddev. That

is, our autoencoder will be trained with more “diverse” side channel logs, which enhance

the robustness but undermines accuracy. Similar findings are obtained in launching extra

real-world workloads.
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3.7 Related Work

Side Channel Analysis. Kocher proposes to use timing side channel to exploit crypto

systems [130]. To date, side channels have been used to exploit crypto systems under

different scenarios [15, 25, 71, 262], including trusted computing environments like Intel

SGX [141, 34, 180, 217]. [38] demonstrates that timing side channel can be launched re-

motely through network. The CPU cache are particularly exploited given its indispensable

role in boosting modern computing platforms [95, 194, 271, 164]. Controlled side channel

assumes an adversarial-controlled OS to log page table access of victim software [265].

DNNs have been used to infer secret keys from crypto libraries [100, 174, 99]. These works,

usually referred to as “profiled SCA”, share the same assumption with our research that

models are trained using historical data. Most existing DNN-based SCA focuses on at-

tacking crypto systems; they typically perform low-level bit-wise classification to gradually

infer key bits. In contrast, we show that attackers in black-box scenarios can use manifold

learning to reconstruct media data of various types in an end-to-end manner. [137, 261]

also use autoencoders in the context of SCA. However, they use autoencoder to denoise

side channel traces as a preprocessing step for SCA of crypto software.

Countermeasures. Software-based techniques include constant-time techniques which en-

sure that software behavior is independent with its confidential data [58, 204, 216, 131,

183]. Techniques have also been proposed to blind secrets or randomize side channel

access patterns [22, 35, 65, 111, 133, 208]. ORAM [87, 161, 229, 225] translates memory

access into identical or indistinguishable traces, which can provably eliminate many side

channels but incur high performance penalty. Program analysis methods such as infor-

mation flow tracking [138, 186], model checking [16], type system [14, 211], abstract in-

terpretation [132, 73, 243], and constraint solving [244, 243, 37] are used to check crypto

software and detect side channels. In contrast, our study delivers a neural attention-based

approach to detecting code fragments inducing information leakage. Hardware-based

countermeasures include randomizing side channel access or enforcing fine-grained re-

source isolation [247, 162, 196]. Compared with system- and hardware-based counter-

measures, software-based approaches usually do not require to modify the underlying

hardware design. Nevertheless, software-based countermeasures are generally high cost

and low scalable in analyzing real-world software.
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3.8 Conclusion

This research proposes SCA for media software. We perform cross-modality manifold

learning to reconstruct media data from side channel traces. We also use attention to lo-

calize program points leading information leakage. We design perception blinding to mit-

igate the proposed SCA. Our evaluation on real-world media software reports promising

results.
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CHAPTER 4

TRUSTED EXECUTION BRINGS FALSE TRUST:
DISCLOSING USER DATA LEAKAGE IN
TEE-SHIELDED NEURAL NETWORKS

This chapter shows that the confidentiality of neural networks (NNs) and user data is compro-

mised by the recently disclosed ciphertext side channels in Trust Execution Environments (TEEs),

which leak memory write patterns of TEE-shielded NNs to malicious hosts. This chapter presents

our work, CIPHERSTEAL, that for the first time demonstrates the severe threat of ciphertext side

channels to NN inputs. CIPHERSTEAL novelly recasts the input recovery as a two-step approach

— information transformation and reconstruction — and proposes optimizations to fully utilize

partial input information leaked in ciphertext side channels.

In this chapter, we comprehensively evaluate two popular deep learning frameworks, Tensor-

Flow and PyTorch, and NN executables generated by two recent NN compilers, TVM and Glow,

and summarize our key findings about their distinct attack surfaces. Moreover, we further steal the

target NN’s functionality by training a surrogate NN with our recovered inputs, and also lever-

age the surrogate NN to generate “white-box” adversarial examples, effectively manipulating the

target NN’s predictions.

4.1 Introduction

Untrusted hosts constitute one major threat to the confidentiality of neural networks (NNs)

and user data. Training NNs on malicious host platforms may leak the intellectual prop-

erties (IPs) of NN developers. Similarly, querying NNs from adversarial providers can

expose user’s private data. Trusted Execution Environments (TEEs) have been emerging

as a promising and perhaps the most practical solution to shield NN training and achieve

secure NN inference on untrusted hosts [176, 143, 125, 156, 110]. TEEs are hardware-based

security mechanisms that encrypt sensitive data into ciphertexts via memory encryption.

60



They are often implemented as a secure co-processor (e.g., Intel SGX [114]) or a secure

virtual machine (e.g., AMD SEV [122]).

A well-known security concern of TEEs is their vulnerability to micro-architectural

side channels such as cache or timing attacks [91, 180, 245], where attackers exploit secret-

dependent data or control flows of TEE-shielded programs. Nevertheless, unlike tradi-

tional programs that express their internal logics via conditioned branches or data ac-

cesses, an NN is essentially a sequence of matrix computations, which exhibits a constant-

time computation paradigm: data and control flows in NNs are fixed regardless of its

inputs, making NN inputs free of micro-architectural side channels.

A New Leakage. Despite the general security belief, this chapter shows that input data of

TEE-shielded NNs can be leaked via ciphertext side channels, and the recovered inputs

can be further leveraged to steal the NN’s functionality. Ciphertext side channels denote a

recently disclosed fine-grained information leakage that particularly exists in TEEs. It can

leak memory write patterns (that are unexploitable through micro-architecture side chan-

nels) of TEE-shielded NNs to the malicious host. Since commercial TEEs widely adopt

deterministic encryption, when secrets are stored at fixed physical locations in TEE’s en-

crypted memory region (e.g., the VM save area, kernel data structures, user-land stacks,

etc.), an identical ciphertext is generated for the same plaintext. Consequently, an ad-

versary (e.g., hypervisors, the host OS) having read access to the ciphertext (either via

software access [149] or via memory bus snooping [141]) can recover informative patterns

in plaintext.

The work presented in this chapter for the first time recovers NN inputs from cipher-

text side channels of TEE-shielded NNs. The recovery does not rely on the structure or

model weights of the target NN. Moreover, unlike existing NN attacks that require full

knowledge of the target NN’s input domain (i.e., having data that cover all classes in the

target NN’s training data; see detailed clarifications in Sec. 4.4), we successfully recover

NN inputs with only partial- or zero-knowledge of the input domain. By attacking TEE-

based secure inference, user privacy in typical machine-learning-as-a-service (MLaaS) can

be largely jeopardized, e.g., in cloud medical image diagnosis. Further, by attacking the

TEE-protected training phase, private training inputs can be gathered to subsequently

train another NN to steal the target NN’s functionality or boost adversarial example (AE)
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attacks.

Technical Challenges. Recent works have tentatively illustrated the threat of ciphertext

side channels to semi-automatically recover cryptographic keys [149, 146]. NN inputs

(e.g., images), which decide NN functionality or indicate user privacy, are fundamentally

different from cryptographic keys. In fact, cryptographic key bits are either 0 or 1, and

each bit often directly determines one ciphertext collision record — as a result, each record

(i.e., collide or not) manifests a one-to-one mapping to each key bit. Nevertheless, during

NN’s computation, ciphertext collisions are induced by writing features (extracted from

NN’s inputs) to memory, and certain input information has been lost during the feature

extraction stage. Moreover, a unit of the written feature typically corresponds to an image

region, which has multiple pixels and each pixel’s value is between 0 and 255. The large

search space of NN inputs and the limited observation in ciphertext side channels make

the input recovery inherently challenging.

This chapter presents a generic and automated framework, CIPHERSTEAL, to address

key challenges in recovering NN inputs from ciphertext side channels. CIPHERSTEAL

recasts the input recovery as a two-step approach: transformation T and reconstruction

R. Given that certain information of NN input x is lost in side channel observation c,

CIPHERSTEAL first transforms the remaining information in c to h = T (c) where h is

presented in an aligned form with x (e.g., h is a partially recovered image). Then, with

h as the basis, CIPHERSTEAL reconstructs the lost information via R. By optimizing the

reconstruction with Bayesian theorem, CIPHERSTEAL eventually yields R(h) = x⇤ ⇡ x.

Results. We employ CIPHERSTEAL to attack both the training and inference phases of

TEE-shielded NNs. We consider two NN execution modes: the interpreter mode (running

NNs in PyTorch or TensorFlow) and the executable mode (compiling NNs using compilers

like TVM [51] or Glow [210]). CIPHERSTEAL is evaluated on 13 real-world and large-

scale NNs of various structures (e.g., Vision Transformer [72]), training algorithms and

tasks. We benchmark the recovery over five popular datasets of two representative input

formats: image and video. In more than 100 different settings, we observe a consistently

encouraging success rate (e.g., > 90% in half of the settings). We also demonstrate the high

quality of inputs recovered from the TEE-shielded NN. By training another NN with these

stolen training inputs, we obtain a surrogate NN exhibiting comparable performance (e.g.,
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> 98% consistency) with the target NN. Also, using “white-box” adversarial examples

generated over the surrogate NN, we largely enhance adversarial attacks towards the

TEE-shielded NN (e.g., from 0 to a 30% attack success rate). In sum, the work presented

in this chapter makes the following contributions:

• (Concepts) While NN inputs were believed free of micro-architecture side channels, we

unveil the new attack surface of ciphertext side channels in TEE-shielded NNs, where

malicious hosts can recover NN inputs to steal user privacy and NN functionality.

• (Techniques) We design a generic and automated framework, CIPHERSTEAL, to deliver

practical NN input recovery with negligible knowledge of the target NN. We recast the

recovery as a two-step approach and propose optimizations to improve its efficiency

and accuracy.

• (Attacks) We constantly achieve promising input recovery on different NNs, input

formats, datasets, runtimes, side channel observations, and levels of attacker’s pre-

knowledge, etc. Our recovered inputs can be further leveraged to steal the target NN’s

functionality and boost adversarial example attacks.

• (Findings) We systematically study the leakage sites in different NN runtimes and sum-

marize the lessons we learned. Our findings can provide insights for deploying NNs

and designing NN interpreters/compilers.

Research Artifact. The code, data, and thousands of recovered images and videos, are
available at: https://sites.google.com/view/cipher-steal [7].

4.2 Preliminaries

4.2.1 Neural Networks (NNs)

An NN F ’s execution can be expressed as fn � · · · � f2 � f1(x), which propagates the input

x through a series of layer fi. Each layer f : y = s(Wx + b) consists of a matrix multi-

plication and addition followed by a non-linear function s. Unlike traditional programs

whose logics are hardcoded with human-written instructions, NNs enable a data-driven

programming paradigm: internal logics in NNs are formed by implicitly “learning” rules
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from data (i.e., training data) and are encoded in its weights W and b. Different from tra-

ditional programs, control and data flow in NN executions are typically fixed and do not

change with input x or weights W and b.

The life cycle of an NN can be divided into two phases.

Training Phase. When training an NN, both forward and backward propagations are in-

volved. The normal scheme is to train NN weights once and then use the weights without

updates. Nevertheless, an NN may still update its trained weights in scenarios like fine-

tuning [52] or security hardening [286] after being deployed in TEE.

Forward Propagation (FP). To develop NNs, developers first collect training inputs and

manually annotate their solutions (ground truth). Then, the NN takes the training inputs

and performs FP to compute the outputs, which are then compared with ground truth to

adjust the NN logic (weights). Intermediate computing results in FP reflect how different

elements in an input are processed by the NN [280, 218].

Backward Propagation (BP). When NN outputs deviate from ground truth, a loss penalty

is computed and backpropagated. Intermediate results generated during BP are known

as “gradients” and guide the NN to update its weights, such that the NN’s logics gradu-

ally matches the ground truth marked in training inputs. Gradients are believed as more

precise indicators of NN behaviors. Many attacks use gradients to downgrade or control

NN predictions [268].

Inference Phase. A trained NN infers predictions for unknown inputs. The inference

phase only has FP, with intermediate outputs characterizing the NN’s inputs. Inference

inputs are user secrets because NNs are commonly adopted for privacy-sensitive uses,

e.g., medical image diagnosis. NN structures often fall into two groups.

Acyclic Structure. NNs are widely used for non-sequential data like images. Representa-

tive structures include convolutional (Conv) and fully connected (FC) NNs, which have

distinct patterns when processing images. For example, in Conv, a kernel slides over the

image and more nested loops (usually four) are required to implement the computations.

However, in FC, inputs are often reshaped as vectors (e.g., a 3⇥ 32⇥ 32 image is reshaped

as a 3072-dimension vector); the computation usually requires only two nested loops.

Recurrent Structure. Sequential data like sentences and videos are processed with NNs
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having recurrent structures (e.g., LSTM [102]). During the execution, an NN is recurrently

applied to each sequence element (e.g., a video frame). The basic NNs in these recurrent

structures are the same as in acyclic structures. Typically, FC is recurrently applied on

words in a sentence whereas Conv is applied on video frames.

4.2.2 Runtime Modes

Interpreter-Based. An NN framework is a software library that provides a programming

interface for developers to build and run NNs. Typical NN frameworks include Py-

Torch [199] and TensorFlow [12]. The runtime system of typical NN frameworks consists

of two components: (1) the Python interfaces that parse and interpret the high-level NN

into a set of matrix operations, and (2) third-party linear algebra libraries (e.g., Open-

BLAS [282], MKL [242], and Eigen [93]) that implement such operations with efficient

low-level binary code. NN frameworks usually allow users to run NNs in both forward

and backward directions. For inference, an NN is executed in the forward mode. To train

an NN, the computational graph of an NN is first constructed with intermediate results

generated during the FP. Then, the computational graph is traversed in reverse order dur-

ing BP where the intermediate results are used to compute gradients for weight updates.

Compiler-Based. NNs are increasingly compiled into executables for better performance

across different platforms. Two mature and actively maintained NN compilers, TVM [51]

and Glow [210], emit standalone executables that can be run with minimal external de-

pendencies. Both compilers follow similar design principles: they start from a high-level

graph representation of the NN and progressively lower it to intermediate representations

(IRs) to allow more target-specific optimizations and eventually emit machine code.

4.2.3 TEEs and Ciphertext Side Channel

TEEs aim to protect sensitive data processing by providing isolated environments, namely

enclaves, for program execution. Specifically, modern TEE systems like AMD SEV, as-

sisted by trusted hardware, encrypt each program’s memory with a unique AES encryp-

tion key, thus preventing malicious hypervisors from accessing or modifying data used

during execution. There is a growing trend of deploying NNs in TEEs [143, 125, 156, 110].

65



With TEEs, developers could protect NNs and preserve their data privacy while deploy-

ing NNs in hardware devices controlled by untrusted hosts.

Deterministic Encryption. Encryption mode in TEEs is constrained by two factors. First,

to support efficient random memory access that requires independently encrypted mem-

ory blocks, chaining mode (e.g., CBC mode) is inapplicable. Second, to encrypt large

memory, the encryption mode should not support freshness (e.g., CTR mode) given the

additional space required by counters. Therefore, AES encryption with deterministic, block-

based mode is widely used by TEEs with large encrypted memory, such as AMD SEV [122],

Intel TDX [114], Intel SGX on Ice Lake SP [114, 119], and ARM CCA [20]. For instance, the

memory of TEE-shielded NN can be encrypted using 128-bit AES symmetric encryption,

i.e., each aligned 16-byte memory block m is encrypted independently. Although a tweak

function T(Pm) is used to calculate a mask value to be XORed with m before encryption,

T(Pm) takes the physical address Pm of m as the only input. In short, the ciphertext of

m is calculated as c = ENC(m� T(Pm))� T(Pm), where the same m stored in the same

physical address Pm is always encrypted into identical ciphertext [149].

Ciphertext Side Channel. Recent studies [146] uncover ciphertext side channels to steal

sensitive data (e.g., private keys). Specifically, ciphertext side channel attacks exploit such

deterministic encryption to infer the equality relations of consequent memory written val-

ues, which should be protected by TEEs. Suppose the ciphertext does not change after a

memory write, the attacker easily infers that the written value equals the value previ-

ously stored in the target memory address. In contrast, a different ciphertext indicates a

changed written value. With such capability, it is often possible to recover certain plain-

text bits in the private keys [146, 69]. In terms of real-world exploitation, Li et al. pro-

pose the first ciphertext side channel attack targeting AMD SEV-SNP [149] and exploiting

cryptographic libraries like RSA. While most discovered vulnerabilities living in AMD

TEE [184, 254, 150, 148, 147] are promptly fixed, the ciphertext side channel, due to the

design limitation of SEV-SNP, cannot be easily mitigated and is still exploitable by attack-

ers [146].

Fig. 4.1 shows a schematic view of the ciphertext side channel attack towards the cryp-

tographic key k, where a TEE-shielded program consecutively writes to the address s.

The ciphertext cs is generated when the program initializes s with 0. Because the cipher-
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*s = 0;
while(i++ < L){

*s += k[i];
} TEE

Ciphertext
cs Check collision

co == cs
k[0]:0

c1 != c0
k[1]:1

Figure 4.1: Ciphertext side channel leakage of cryptographic keys.

text c0 (when writing k[0] to s) equals cs, attackers can infer that k[0] is 0. Accordingly,

since key bits are either 0 or 1 and c1 6= c0, attackers also know that k[1] is 1.

4.3 Motivations

This section elaborates on challenges and our insights on recovering NN inputs from ci-

phertext side channels. To ease the presentation, we use images as representative NN

inputs; however, our techniques are generic and apply to other types of NN inputs like

videos.

Significance of Input Data in NN. As introduced in Sec. 4.2.1, NNs essentially enable

a data-driven programming paradigm. Depending on the phase of being fed into NNs,

input data act as the following key roles:

Intellectual Property: During the training phase, an NN learns rules from training inputs

to form its decision logics. Preparing training inputs requires considerable manual effort

and human expertise. In that sense, training inputs denote the intellectual property of the

NN owner. Since attackers can train equivalent NNs of the same functionality using the

recovered training inputs, leaking training inputs also compromises the confidentiality of

TEE-shielded NNs.

User Privacy: In modern MLaaS, users often query cloud NNs with their private data (e.g.,

medical images of certain diseases). Since TEEs are widely adopted to ensure secure in-

ference on NNs hosted by untrusted service providers [176], leaking user inputs and pre-

diction results from TEE-shielded NNs largely violates the privacy guarantee.

TEE-shielded NNs should incur ciphertext collisions due to the following reasons.

First, the matrix computations in NNs are implemented as nested loops, which frequently
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write intermediate results to fixed memory addresses. Besides, each NN layer has a non-

linear activation function; it often maps the intermediate results into a smaller region (e.g.,

Sigmoid) or discrete values (e.g., ReLU), largely increasing the chance of ciphertext colli-

sions (see Sec. 4.7.1).

loop:
movss [addr], xmm0
jmp loop

TEE

FeaturesImage
region

NN
layer

Y
or
N

Figure 4.2: Ciphertext side channel leakage of NN inputs.

Crypto. Keys vs. NN Inputs. Nevertheless, recovering NN inputs from ciphertext side

channels is fundamentally more challenging than cryptographic keys. As illustrated in

Fig. 4.1, each ciphertext collision in cryptographic software is often induced by writing a

key bit. Since key bits are either 0 or 1, the collision information can be accurately mapped

to each key bit. In contrast, as shown in Fig. 4.2, intermediate results written by an NN are

features extracted from its input; these features are highly abstracted such that certain input

information is inevitably lost. Moreover, a ciphertext collision record usually corresponds to

features of an image region (e.g., in convolutional NNs). Given that multiple pixels exist

in an image region and each pixel value ranges from 0 to 255, the collision information is

extremely limited, let alone the lost information during feature extraction.

Existing NN Input Recovery. One may expect to adopt prior input recovery methods or

recover NN inputs from other side channels. We clarify the infeasiblities below.

Yuan et al. have recovered NN inputs from cache side channels of the data pre-

processing modules in MLaaS [278]. However, their context does not suffer from the

information loss and limited observation issues: cache side channels in pre-processing

modules are directly induced by image pixels, and the observable cache states are highly

informative (e.g., a L1 cache may have 64 cache sets, resulting in 64 different states). More-

over, as clarified in Sec. 4.2.1, NNs do not have cache side channels due to their fixed

data/control flows, and the leakage in pre-processing modules can be easily evaded by

using already-processed inputs.

Several prior works tried to recover NN inputs from power side channels of NNs [182,
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251]. They require binarized NNs (i.e., whose weights are either -1 or 1) and assume white-

box access to target NNs. Importantly, they can only recover the coarse shape in images

and only apply to black-and-white images of clean backgrounds. Nonetheless, modern

NNs have floating-point weights and take diverse real-world images, making those re-

covery methods inapplicable. TEE-shielded NNs are also fully black-box to attackers.

Observations & Insights. This chapter identifies the following insights to achieve NN

input recovery from ciphertext side channels of TEE-shielded NNs. (1) Different from

cryptographic keys where key bits are private, not all pixels in an image are secrets. E.g.,

failing to recover a few pixels in an image’s background still indicates a successful input

recovery, as long as the recovered inputs leak user privacy and enable stealing NN func-

tionality. Moreover, (2) unlike cryptographic key bits that are independently sampled,

pixel values are highly correlated. As pointed out by [278], pixel values have implicit

constraints to form meaningful contents (e.g., randomly sampled pixels usually do not

constitute meaningful images). Such constraints can be leveraged to reconstruct the lost

information (see our solutions in Sec. 4.5).

Taking the above challenges and insights, we therefore do not aim to recover exact

pixels in images, but recover image contents that are visually identical to the original ones.

As evaluated in Sec. 4.7, our recovered inputs significantly leak user privacy, and enable

effective functionality stealing and downstream attacks. Our techniques reconstruct the

lost information even from limited observations, and are highly practical and effective

under different levels of attacker’s pre-knowledge, as will be introduced below in Sec. 4.4.

4.4 Threat Model and Assumptions

Assumptions. Following existing works that deploy NNs in TEEs [179, 108, 223, 231], we

assume that the deployed NNs only output the final predicted label to users who issue the

queries (note that malicious hosts cannot view the predicted label), whereas all remaining

intermediate results are kept in the TEE and not returned to the users. Also, to mitigate

query-based NN cloning [193, 198, 235], TEE-shielded NNs do not return the prediction

confidence (i.e., the probability of the input belonging to each class). We also assume that

the target NN is either already well-trained before deployed in TEEs or the NN can be
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trained/fine-tuned inside TEEs; both are common in practice.

The software stack inside the VM, including the OS, the NN runtime, and the NN itself,

is secure and bug-free, such that the adversary cannot voluntarily alter its control flow or

force it to leak secrets. The encryption algorithms of TEEs are also secure; adversaries

cannot decrypt the ciphertext. We assume the hardware and microcode of the processor

are up-to-date: known attacks against SEV, SEV-ES, and SEV-SNP [121] have all been

fixed, leaving only generalized ciphertext side channel leakage discovered in [149] for

use.

Attacker’s Capability. Aligned with existing works that attack/harden TEEs or shield

NNs with TEEs [146, 69, 256], we follow the established threat model where adversaries

are host OS or hypervisors: the adversary is assumed to have full system privilege on the

machine and is also capable of performing physical attacks, including inferring address

and content of every memory read via memory bus snooping [141], reading remnant data

from the DRAM via cold boot attack [92], and accessing memory directly via DMA de-

vices [230]. Nevertheless, attackers can only read the encrypted data and are unable to

decrypt the ciphertext. Therefore, attackers cannot directly inspect the content of the de-

ployed NN (e.g., reading its structure/weights). Also, when a normal user is using the

NN, its inputs and predictions are unknown to attackers since they are encrypted.

Attacker’s Knowledge of the Target NN. Our input recovery has much weaker require-

ments than previous attacks.

NN Structure and Weights. Previous NN attacks [42, 90] (see details in Sec. 4.4.1) often re-

quire full implementation details of NNs, including the structure and trained weights. In

contrast, when recovering NN inputs, we do not require knowing the target NN’s struc-

ture or weights.

Input Format & Input Domain. Aligned with existing NN attacks and side channel at-

tacks [235, 166, 42, 278, 81], we assume attackers can query the deployed NN with their

own data and observe ciphertext side channels. We first define two terms related to NN

inputs.

Definition 1 (Input Domain). An NN’s input domain denotes the set of its supported classes.

Similar to C/C++ software that has input type restrictions (e.g., int vs. float), NNs
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also have constraints on their valid inputs, which are formed over the semantics level.

These valid inputs constitute the input domain of the NN, as defined in Definition 1. For

example, the input domain of an NN classifying digit one and zero consists of the class

“zero” and “one.” Similarly, for medical image diagnosis, the input domain is formed

by all disease classes an NN can diagnose.

Definition 2 (Input Format). Input Format denotes the union over input domains of different

NNs serving the same usage.

Beyond the input domain, we further define the input format in Definition 2, given

that NNs having the same usage may have different input domains. For instance, al-

though two NNs capable of diagnosing different diseases have different input domains,

they both accept medical images as inputs. Here, medical images are their input format.

Note that our definition of input format is different from the conventional “format” in

file extensions (e.g., .PNG vs. .JPEG). When processing inputs, NNs do not distinguish

input of different extensions; raw input files are decoded first and then converted into

floating-point matrices as NN inputs.

Existing NN attacks [235, 227, 40, 42] (see detailed explanations in Sec. 4.4.1) require

having data covering the full input domain, which may not be always feasible. For exam-

ple, to attack a disease-diagnosing NN, attackers may not have medical images covering

all diseases supported by the NN. However, having data of the same input format is often

feasible, e.g., it is practical to collect some benign medical images. The overly strong re-

quirement on input domain limits the application scope of existing NN attacks. Our input

recovery, in contrast, has a much weaker requirement that only assumes having data of

the same input format. This way, we can recover data covering the target NN’s input do-

main to enable previous attacks, rendering the severity of the leakage and the superiority

of our techniques.

In some cases, an NN’s input domain may be covered by public data (e.g., a classifier

for cat and dog images). Therefore, to comprehensively assess attackers’ (potential) ca-

pabilities and the attack surfaces of data leakage in TEE-shielded NNs, we evaluate our

input recovery under different knowledge of the target NN’s input domain: ¨ a zero-

knowledge (ZK) attacker who does not have input from the target NN’s input domain;

≠ a partial-knowledge (PK) attacker having inputs from a subset of the input domain;
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and Æ a full-knowledge (FK) attacker whose inputs cover the full input domain. Noting

that having data from the same domain does not indicate having the same inputs. The

attacker’s data and target NN’s inputs may be from the same class but are always different

in our setting; otherwise, stealing the target NN’s inputs is unnecessary.

4.4.1 Positioning w.r.t. Previous Attacks

CIPHERSTEAL, for the first time, recovers high-quality NN inputs from side channels of

TEE-shielded NNs; it can complement existing side channel attacks towards NNs and

largely augments algorithmic attacks on TEE-shielded NNs.

Completing Side Channel Attacks Towards NNs. Our input recovery is orthogonal to,

and can complement existing side channel attacks that recover NN structures [112, 267,

105, 266, 167, 81, 75]. Moreover, we argue that recovering NN inputs generally denotes

more severe and new threats, because NN structures may be derived from public back-

bones. Importantly, despite that recovering an NN’s weights is still hardly achievable,1

attackers can leverage our recovered inputs to steal the target NN’s functionality (a.k.a.,

obtaining different but equivalent weights).

Table 4.1: Requirements of previous NN attacks and CIPHERSTEAL. and indicate
needed and not needed.

Attack
Pre-Knowledge of the Target NN

Prediction Input Input
Weights Gradients Confidence Domain Format

Steal Functionality
Fool Prediction
CIPHERSTEAL

Augmenting Algorithmic NN Attacks. As in Table 4.1, previous NN attacks can be di-

vided into two categories.

Steal Functionality. Since recovering exact NN weights is challenging, query-based infer-

ence attacks [235, 166, 198] are proposed to steal NN functionality. In short, attackers

query the target NN and let their own NN duplicate the prediction confidences (i.e., prob-

1Existing works steal NN weights by reading plaintext transmitted through PCI bus [291]; TEEs mitigate
this via traffic encryption.
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abilities of the input belonging to all possible classes). However, such attacks are miti-

gated by TEE-shielded NNs which do not return prediction confidences. Moreover, the

stealing is confined by the attacker’s queried data: to steal the full functionality, attackers

must have data covering the target NN’s full input domain. For instance, it is infeasible to

steal an NN’s disease-diagnosing capability without images containing diseases. Also, to

precisely steal the functionality, queried inputs are expected to be close to the target NN’s

training inputs.

Our input recovery, in the PK and ZK settings (as discussed in Sec. 4.4), can boost

query-based attacks by recovering input in the full input domain. Further, we success-

fully recovered NN inputs during the training phase; with the recovered training inputs,

CIPHERSTEAL facilitates more precise functionality stealing.

Fool Prediction. Previous works fool an NN’s prediction by generating adversarial exam-

ples (AEs) [90, 173, 42]. The goal is to manipulate the target NN’s prediction (e.g., let

the NN always predict “benign” for all diseases) or downgrade the accuracy (i.e., de-

plete the NN’s functionality). AEs are generated by slightly perturbing an NN’s inputs

which often rely on white-box access to the target NN (e.g., computing gradients). How-

ever, these white-box attacks are mitigated by TEE-shielded NNs whose weights are en-

crypted. Nevertheless, since an NN’s vulnerabilities to AEs are mostly inherited from

training data [90, 264, 274], our disclosed data leakage can enable these white-box attacks

by generating AEs over a surrogate NN trained with CIPHERSTEAL’s recovered training

inputs (see results in Sec. 4.7.4).

4.5 Recovering NN Inputs

When deployed in TEEs, an NN’s trained weights, inputs, outputs, and all intermediate

computation results are encrypted. However, as introduced in Sec. 4.2, due to the de-

terministic encryption in TEEs, ciphertext encrypted at a fixed physical address is only

decided by the plaintext stored in memory. That is, whenever new plaintext is written

at a certain physical address, by observing whether the ciphertext changes, we can infer

if the plaintext is different from the historical content stored at that address. This way,

when the target NN is taking an input, we can generate a binary sequence (each binary
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value “0/1” flags whether the ciphertext changes), which depends on the plaintext input,

for each physical address during one execution of the target NN. These binary sequences,

after being concatenated, denote one ciphertext side channel trace used by CIPHERSTEAL.

Similar to existing profiling-based side channel attacks [174, 124, 99, 278, 81], CIPHER-

STEAL also consists of an offline profiling and an online attack stage.

Offline Stage. Given a TEE-shielded NN F , the attacker prepares some data X0 and uses

them to query F for profiling. When querying, the attacker simultaneously logs the ci-

phertext side channel traces C0
F

. Finally, with the collected C0
F

and the corresponding X0,

CIPHERSTEAL established a mapping A : C0
F
! X0 for input recovery. The A should

generalize well to unknown NN inputs.

Different from previous queried-based attacks [235, 166, 198], CIPHERSTEAL does not

use the queried prediction; it only infers how ciphertext side channels change with inputs.

Thus, querying the target NN with data out of its input domain is still feasible (e.g., under

the ZK setting), despite that the predictions are no longer meaningful.

Online Stage. During the online attack, whenever the target NN takes an unknown input

x 2 X (either for inference or training), the attacker logs the ciphertext side channel trace

c and uses CIPHERSTEAL to recover x from c. Note that X0 \X = ∆. X0 and X have the

same input format (defined in Definition 2) but may cover different input domains. CI-

PHERSTEAL is agnostic to the specific TEE platform or side channel logging tools (e.g.,

SEV-Step [146, 258] or CipherLeak [149]); as evaluated in Sec. 4.7.3, CIPHERSTEAL

works well for different ciphertext side channels.

4.5.1 Problem Reformulation

Information Loss and Decomposition of A. As mentioned in Sec. 4.3, ciphertext colli-

sions in TEE-shielded NNs are due to writing intermediate results to memory, which are

highly abstracted features of NN inputs. Extracted features may vary with the task an NN

performs. For example, an NN may focus on outlines of faces for image segmentation but

eyes for face recognition. Therefore, certain information in the input is inevitably lost

during this feature extraction process. In addition, ciphertext side channels, which char-

acterize if two consecutive memory writes to the same addresses have the same content,
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only provide an incomplete and coarse-grained observation of intermediate outputs.

Thus, it is infeasible to recover the exact same input from ciphertext side channels due to

the information loss mentioned above. The key challenges that CIPHERSTEAL addresses

are 1) extracting the information leaked in ciphertext side channels and 2) utilizing the

extracted (incomplete) information to reconstruct the lost information. Accordingly, A

is decomposed into two phases: a transformation T and a reconstruction R. The trans-

formation T transforms the form of the information retained in ciphertext side channel c

(which is generated when the target NN is executing with input x) to get h = T (c), where

h denotes the re-formed information from c that is presented in an aligned form with NN

inputs (e.g., a burred image whose details are lost; see Fig. 4.3). Then, the reconstruction

R aims to reconstruct the lost information in h to get x⇤ = R(h) which is close to x.
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Figure 4.3: Decompose A : c ! x as transformation T and reconstruction R. R is imple-
mented via its inversion p(h|x⇤) and the realism term p(x⇤).

Transformation T . Obtaining T is straightforward. Attackers can directly force T to out-

put x when T takes the corresponding c. By minimizing the distance between T (c) and

x, T (c) is guided to represent in an aligned form with x. For example, if x is a chest X-ray

image, T (c) will also be a (blurred) chest X-ray image. However, T (c) often cannot gener-

ate the original x, because information of x has been unavoidably lost in c. Instead, T (c)

should output h which properly re-forms the remaining information in c.

Reconstruction R. Building R is inherently challenging since it requires “creating” infor-

mation and refining h = T (c). While attackers may expect to infer the lost information,

this process, if at all possible, should be data-intensive and not practical due to the trans-

ferability and generalizability issues. First, different NNs may have distinct preferences

when extracting features from inputs; the R built for one target NN can hardly be trans-
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ferred for another different target NN, and building one R for each target NN is costly.

Second, inferring lost information may rely on the contents of each input and is input-

dependent (e.g., the rule of inferring missed ears for cat images does not apply to infer-

ring wheels in car images). Given that the target NN’s inputs are unknown, the inferred

R using the attacker’s own data may not generalize to them (especially PK or ZK settings

discussed in Sec. 4.4).

Revisit the Reconstruction: A Bayesian Perspective. To alleviate the above hurdles, we

view R from the Bayesian perspective. Given h = T (c) transformed from a ciphertext

side channel observation c, R aims to achieve the objective:

arg max
x⇤

p(x⇤|h), (4.1)

where p(x⇤|h), which infers x⇤ based on h, is maximized when x⇤ equals the NN input x

that produces c. According to Bayesian theorem, p(x⇤|h) in Eq. 4.1 can be re-formed as:

p(x⇤|h) =
p(h|x⇤)p(x⇤)

p(h)
(4.2)

Since h is known, p(h) is accordingly constant. As illustrated in Fig. 4.3, the objective in

Eq. 4.1 is equivalent to

arg max
x⇤

p(h|x⇤)p(x⇤), (4.3)

where p(h|x⇤), which infers h based on x⇤, is the inversion of the reconstruction R. p(x⇤)

denotes the realism of x⇤, i.e., how likely x⇤ is semantically meaningful (e.g., a valid med-

ical image rather than random pixels).

Estimating p(x⇤) has been widely studied, and existing research can provide out-of-

the-box solutions [89, 128]. Moreover, since p(x⇤) is only related to the attacker’s data X0,

once estimated, it can be applied to any target NNs regardless of their tasks. This way, an

attacker only needs to estimate p(h|x⇤) for each target NN.

Estimating p(h|x⇤) is inherently easier than estimating p(x⇤|h) as it “removes” infor-

mation from x⇤. Intuitively, if x⇤ is an image, p(h|x⇤) aims to answer the question: “What

details should be removed from x⇤ to mimic the feature extraction of F?” Thus, p(h|x⇤) manifests

better generalizability: the pattern of information removal is mostly decided by the target
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NN’s task (i.e., the feature extraction mentioned in the question) instead of a specific input.

For example, if x⇤ is a face photo and the target NN recognizes human identity, p(h|x⇤)

simply ignores the face orientation but p(x⇤|h), which aims to reconstruct the orientation,

depends on x⇤ because face orientations vary in different x⇤.

4.5.2 Implementation Considerations

This section introduces how different modules in Sec. 4.5.1 are implemented.

Implementation using Neural Networks. In practice, we find that ciphertext side chan-

nels logged during one NN execution may be lengthy due to the matrix computations

(i.e., nested loops) in NNs. Also, NN inputs are high-dimensional data like images and

videos, which have semantically meaningful contents. Hence, we implement T , p(h|x⇤),

and p(x⇤) using neural networks given their capabilities of processing lengthy side chan-

nel traces and understanding complex NN inputs [278, 226, 89]. Therefore, our offline

stage trains T , p(h|x⇤), and p(x⇤) using the attacker’s own data X0 and the corresponding

ciphertext side channels. The online stage directly applies them to the target NN.

Training Objective of T . The transformation is implemented as an NN Tq, where q de-

notes its weights. Tq is trained during the offline stage using the attacker’s data X0 and

their derived ciphertext side channels C0
F

. For each x 2 X0 and its corresponding c 2 C0
F

,

the training of Tq(c) is guided with the objective:

arg min
q

L(x, Tq(c)) (4.4)

where L denotes the distance between x and the transformed information in c. As men-

tioned in Sec. 4.5.1, with the objective of minimizing L, q is optimized such that informa-

tion in c is re-formed as h = Tq(c), whose form is aligned to x. L can be set as the mean

squared error (MSE) or other advanced loss functions if applicable.

Time Series. Besides recovering images, we also consider video as one representative

sequential data of NN inputs. Compared with images, videos additionally include time-

series information. A video can be viewed as a sequence of image frames where two

adjacent frames are correlated. Recovering videos is conceptually similar to recovering

sentences, which is a sequence of words, but is technically harder. To recover the video x
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from its ciphertext side channel trace c, the Tq is recurrently called. At each time step i for

the frame fi (i.e., an image) in the video x, Tq takes two inputs: 1) c and 2) the recovered

image frame fi�1 at the previous step. This way, T recurrently outputs video frames which

eventually constitute the video x. In particular, when reconstructing the first frame f0, T

takes c and an empty variable f∆ = 0 as inputs.

Inverting Reconstruction: p(h|x). As shown in Sec. 4.5.1, we decompose the reconstruc-

tion as p(h|x) and p(x). The p(x|h), which is the inversion of the reconstruction, is im-

plemented with an NN Iw of weights w. Iw is simultaneously trained with Tq, but from

a different direction: Iw takes x 2 X0 as inputs and is expected to output Tq(c), where c

is the corresponding ciphertext side channel of x. Accordingly, the training objective in

Eq. 4.4 is extended as:

arg min
q,w

L(x, Tq(c)) + L(Iw(x), Tq(c)) (4.5)

Ensuring the Realism: p(x). Estimating p(x) has been widely studied via generative

models (e.g., GANs [89], Diffusion models [128]). In short, given a generative model G,

p(x) can be estimated by projecting a collection x into a continuous latent space Z. Since

Z is continuous, infinite and diverse x can be represented as the results of interpolation

and exploitation in Z [89]. Therefore, by randomly sampling z from Z, vivid and new

samples can be generated by G(z). Note that p(x) is estimated using the attacker’s own

data X0.

Once Tq, Iw, and G are well-trained, suppose during the online attack, the attacker

logs a ciphertext side channel trace c when the target NN is taking an unknown input x.

The attacker first transforms c to h = Tq(c). To reconstruct the lost information in h, the

attacker needs to optimize the following objective:

arg min
z⇤

L(h, I � G(z⇤)) (4.6)

which can be achieved via optimization such as stochastic gradient descent (SGD) [123].

Note that solving Eq. 4.6 is similar to training a neural network. Nevertheless, the weights

of neural networks are fixed in Eq. 4.6 and only the input of G, namely z, is updated. This

process is equivalent to searching for a valid input (of rich details) that can lead to the
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same h. Since partial information in x is retained in h and pixels in images (or video

frames) are highly correlated [278], h can guide G(z⇤) to be close to x.

4.6 Evaluation Setup

Table 4.2: Studied NNs and datasets for various tasks under different attacker’s knowl-
edge.

Exp. NN Dataset Task Usage Input Domain Logging ToolID Owner/User Attacker{kA
LeNet [140] MNIST [68] Classification Digit recognition

Digit 0-9 FK: Digit 0-9

SEV-Step

{kB Digit 0-9 PK: Digit 0-4{kC Digit 0-4 ZK: Digit 5-9
{kD FaceNet [213] CelebA [168] Regression Face recognition Face Photos ZK: Face photos

of other identities{kE MobileNet [109] Chest X-ray [246] Classification Disease diagnosis 14 Diseases ZK: Benign{kF PK: 7 Diseases
{kG ResNet [96] ImageNet [67] Regression Image compression 100 classes FK: 100 classes

in ImageNet in ImageNet{kH ConvLSTM [226] KTH Actions [214] Classification Video understanding 6 Actions FK: 6 Actions†{kI
ViT [72] MNIST [68] Classification Digit recognition

Digit 0-9 FK: Digit 0-9

CipherLeak

{kJ Digit 0-9 PK: Digit 0-4{kK Digit 0-4 ZK: Digit 5-9{kL ViT Chest X-ray [246] Classification Disease diagnosis 14 Diseases PK: 7 Diseases
{kM ViT CelebA [168] Regression Face recognition Face Photos ZK: Face photos

of other identities
* Markers {kA - {kK are consistently used in the rest of this chapter to ease finding the setups.
† In the setup of {kH , the human IDs of attacker’s videos and owner’s/user’s videos do not overlap.

NNs, Datasets, Tasks, and Input Domain. Table 4.2 lists our evaluated NNs and datasets.

These NNs are representative and diverse in structures. They are widely adopted as the

backbone of modern NNs, e.g., the Vision Transformer (ViT) [72] is the backbone of mod-

ern multi-modal LLMs. We consider both classification and regression tasks. The datasets

are also diverse, including images and videos that cover representative real-life scenarios.

For different datasets and NNs, we construct different experiments where attackers have

varied knowledge of the input domain, as highlighted in Table 4.2. The experiment IDs{kA - {kM in Table 4.2 are consistently used in the rest of this chapter to ease finding the setups.

For FK and PK cases, to ensure that NN owners, users, and attackers do not have

overlapped data, we use half of the data in the original training split as NN owners’ data

to train the target NN. The remaining data in the training split are used as the attacker’s

query data; accordingly, data in the original test split are treated as user inputs. For ZK

cases, attacker’s data and owner’s/user’s data are from different classes, ensuring that

they do not overlap. Noteworthy, for human action (video) classification ( {kH ), despite that
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attacker’s data cover all actions (i.e., FK), the human identities of attacker’s videos and

owner’s/user’s videos do not overlap.

Runtimes. In line with Sec. 4.2.2, NNs running in both interpreter-based frameworks and

executable forms are evaluated. We consider two most popular frameworks, PyTorch

(version 2.0) and TensorFlow (version 2.13). We also consider the two most popular NN

compilers, TVM (version 0.12) and Glow (the commit 2dcde3f).

Execution Phases. We consider the following three different execution phases of NNs.

Inference: Feature Extraction. The inference phase of an NN only has forward propaga-

tion (FP). Therefore, we study if ciphertext side channel leakage exists in the computations

of common NN operations such as convolution, pooling, and layout transforms. We eval-

uate the inference phase of both interpreter-based frameworks and executables given their

different computational paradigms.

Training: Gradient Computation. The training phase consists of an FP followed by a back-

ward propagation (BP), which performs gradient computation. Only interpretation-based

frameworks currently support BP. Thus, we study the additional leakage of the gradient

computations in BP of PyTorch and TensorFlow.

Fine-Tuning: Updated Weights. NNs can be fine-tuned (i.e., slightly trained) after being

deployed in TEEs due to security hardening (e.g., NN slicing [286, 285]). As a result, the

weights of the NN will be updated, and the patterns of ciphertext side channel collisions

(which are jointly decided by NN weights and inputs) will be accordingly changed. Since

attackers may be unaware of the fine-tuning and the query (during offline profiling) is

conducted over the initially deployed NN, we study whether the input recovery applies

if the target NN updates its weights.

Evaluation Metrics. As discussed in Sec. 4.3, NN inputs play distinct roles (e.g., user’s

privacy, or NN owner’s intellectual properties) in different execution phases. Therefore,

we jointly use three metrics to evaluate the recovered inputs from different aspects.

Prediction Consistency (PC). Since input information related to the prediction is critical

(e.g., the disease in a medical image), we evaluate if a recovered input can result in the

same prediction as the ground truth input when fed into the target NN. Because an NN’s

output is chosen from a pre-defined set of predictions, the baseline of classification tasks is
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1/#Classes. For regression tasks ( {kD , {kG , {kM in Table 4.2), since NN outputs are vectors of

continuous values, we check if the recovered input has a smaller Cosine distance with its

ground truth input than one randomly selected input. Thus, the baseline of PC for regression

tasks is 50%.

Training Consistency (TC). Training inputs further decide the functionality of the target

NN. Thus, we also evaluate, when a new surrogate NN is trained using the recovered

training inputs, whether it has consistent functionality with the target NN. Following TEE’s

protection, we annotate recovered training inputs using the predicted labels (w/o confi-

dences) when querying the target NN with them. The PC is measured as the percentage

of user test inputs for which the newly trained surrogate NN has the same prediction as

the target NN. The baseline of TC is the same as PC: 1/#Classes for classification and 50% for

regression.

Similarity (SIM). Besides the distinct roles of inputs in NNs under different contexts, we

also conduct a similarity evaluation exclusively on each recovered input. We use the

LPIPS [281] as the similarity metric given its high expressiveness of capturing image se-

mantics. For each recovered input, we use the ground truth NN input and M � 1 ran-

domly selected (different) NN inputs to construct a candidate set. We then compute all

candidates’ similarities with the recovered input. To assess the recovered information

beyond the input’s label (as already evaluated via PC), all candidates are from the same

class of the ground truth input. Results are reported as the percentage of recovered in-

puts whose ground truth inputs are among the top-K similar candidates. To reduce ran-

domness, we repeat the similarity evaluation five times and report the average results in

Sec. 4.7. We set K = 1 and M = 100. Thus, the baseline of SIM is 1/100 = 1%.

Side Channel Logging. Two mature logging tools have been proposed by previous works

to collect ciphertext side channels: CipherLeak [149] and SEV-Step [146, 258]. In short,

CipherLeak only logs ciphertexts of last writes in a memory page, and checks page-wise

ciphertext collisions. SEV-Step, in contrast, is finer-grained to track each instruction’s

memory write and record ciphertext collisions between instructions. Therefore, we use

SEV-Step to log ciphertext side channels from (classical) moderately sized NNs, and

employ CipherLeak for larger NNs (i.e., ViT, as indicated in Table 4.2) where using

SEV-Step is too costly.
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We follow the default configurations of CipherLeak. When configuring SEV-Step

in our experiments, we found that it is based on Linux kernel 5.14 which is outdated and

incompatible with the latest SEV-SNP firmware (version 1.55). This poses a conflict since

the latest firmware is required to launch a SEV-SNP guest VM to run the target NNs.

Porting SEV-Step to newer kernel versions requires considerable manual effort and is

impractical on our end. We have contacted developers of SEV-Step for help; by the time

of submission, the upgrade is still in progress.

Thus, we mimic SEV-Step by using Intel Pin [170], an instrumentation tool, to record

each instruction’s memory write in TEE-shielded NNs. Our experience on SEV-Step

shows that its outputs are “clean” and precise to track each memory write, and our log-

ging results using SEV-Step and Pin are identical on programs currently supported by

SEV-Step. However, since SEV-Step is timer-based, it may neglect memory writes oc-

curred during a time interval. We therefore also benchmark our input recovery towards

this impact. Overall, our input recovery is promising even when 63 of every 64 memory

writes are unrecorded; see Sec. 4.7.3.

4.7 Evaluation

We consider four research questions (RQs). RQ1 studies the leakage sites and attack sur-

faces under various settings. RQ2 assesses recovering complex and diverse NN inputs.

RQ3 evaluates how our input recovery is affected by different ciphertext side channels.

RQ4 demonstrates NN attacks (mentioned in Sec. 4.4.1) enhanced by our results.

4.7.1 RQ1: Leakage Sites and Attack Surface

We first analyze how the vulnerable functions distribute among different NN executables

and interpreters. We then show the recovery results w.r.t. different settings. To ease the

setup of controlled experiments, we focus on MNIST cases in this section and mainly

discuss the prediction and training consistency. Similarity results and other input data

and formats are given in Sec. 4.7.2.
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Table 4.3: Vulnerable modules and keywords of sample functions. More cases are pro-
vided in our artifact [7].

Runtime Module Example Keywords

PyTorch Conv/Matrix/Kernel _conv_, _bmm_
Auto-grad _autograd_

TensorFlow GEMM _sgemm_
gemm_

TVM Layout Transformation layout_transform
Each layer fused_

Glow Each layer conv2d_f_3_
matmul_f_21_

Vulnerable Modules

Due to the constant-time computations of NNs (i.e., the accessed memory addresses of NN

computations are fixed), localizing vulnerable modules that have ciphertext side channel

leakage in NNs is straightforward. Similar to the trace differentiation in existing side

channel detection works [253, 255], we can simply check if the ciphertext collisions of

each address change with inputs.

1
2
3
4
5
6
7
8
9

; [bias]: bias
; [addr1]: Conv result
; [addr2]: zero-initialized
; xmm4: 0
movss xmm1, dword ptr [bias]
movss xmm3, dword ptr [addr1]
addss xmm3, xmm1
maxss xmm3, xmm4
movss dword ptr [addr2], xmm3

(c) Fused Conv & ReLU (TVM).

1
2
3

; [addr2]: zero-initialized
movss xmm0, dword ptr [addr1] 
movss dword ptr [addr2], xmm0

(b) Layout transformation (TVM).

1
2
3
4

; xmm2: 0, [addr]: zero-initialized
vaddss xmm3, xmm3, dword ptr [bias]
vmaxss xmm3, xmm3, xmm2
vmovss dword ptr [addr], xmm3

(a) ReLU operation (Glow).

Figure 4.4: Code patterns in Glow and TVM executables.

Executables. Table 4.3 summarizes our localized vulnerable modules. In compiled NN

executables, each NN layer is implemented as a standalone function. For executables

generated by Glow, we find that almost all layers have ciphertext side channel leak-

ages. We analyze all leakage-incurring instructions in executables and attribute these

leakages to the compiled activation and pooling functions. Activation and pooling are

non-linear functions converting continuous values into a smaller range or discrete ones.

Indeed, an NN’s intelligence is based on its non-linearity. Fig. 4.4(a) shows an example

of ReLU(x) = max(0, x) in Glow-emitted executables, which writes the results into the
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output memory region (i.e., addr in Fig. 4.4(a)). However, since the output region is

zero-initialized, when a negative value is fed into ReLU, the output 0 written to the out-

put region will trigger an observable memory ciphertext collision. Note that such leakage

instructions are repeatedly called in loops of matrix computations; thus even a single leak-

age point can reveal a large amount of input information.

Differently, while similar operations (activation functions, pooling) exist in executa-

bles compiled by TVM, we do not observe pervasive leakage sites as in Glow executables.

Note that multiple operators in the target NN may be optimized as one function by NN

compilers (e.g., via operator fusion [51]). As shown in Fig. 4.4(c), a ReLU is fused into its

preceding Conv layer. In that case, the results of Conv operations (which have fewer ze-

ros) are stored in the output memory region; thus, collisions between ReLU’s output zeros

and the zero-initialized memory are largely reduced. Nevertheless, we find that the lay-

out transformation modules of TVM contribute to many ciphertext collisions. The zeros

from ReLU still exist in the consequent computation. As shown in Fig. 4.4(b), whenever

these zeros are moved to a zero-initialized memory region (i.e., addr2), which happens

frequently due to memory layout optimizations, ciphertext collisions still occur.

Table 4.4: Recovery results for studying attack surfaces. PC and TC denote prediction and
training consistency.

Runtime
Training Input User Test Input

Runtime
Training Input User Test Input

Forward Backward Forward Fine-Tuning Forward Backward Forward Fine-Tuning
PC TC PC TC PC PC PC TC PC TC PC PC{kA FK

TVM
97.18% 98.13% N/A N/A 97.33% 97.18%

PyTorch
82.08% 97.82% 40.37% 68.07% 66.83% 70.67%{kB PK 90.90% 98.17% N/A N/A 90.62% 90.71% 70.57% 96.98% 30.35% 68.07% 60.03% 60.15%{kC ZK 96.81% 99.65% N/A N/A 97.60% 97.66% 75.14% 99.55% 39.61% 76.70% 63.31% 68.52%{kA FK

Glow
98.20% 98.28% N/A N/A 97.88% 97.87%

TensorFlow
70.45% 89.61% 55.14% 97.26% 60.45% 60.40%{kB PK 95.65% 98.26% N/A N/A 95.33% 95.33% 61.03% 87.87% 45.36% 96.66% 51.22% 51.41%{kC ZK 97.96% 99.68% N/A N/A 98.11% 98.40% 69.50% 81.86% 49.33% 96.71% 52.23% 59.01%

Interpreter Frameworks. PyTorch and TensorFlow have leakages in similar modules. In

particular, for PyTorch, most ciphertext collisions occur in the convolution, matrix, and

kernel computation modules (e.g., conv-, kernel-, and bmm-related functions). During

BP, the auto-grad modules also have ciphertext side channel leakage. Similar modules in

TensorFlow, which are implemented via GEMM (i.e., general matrix multiply) functions,

also induce leakages.

Due to the just-in-time (JIT) compilation paradigm of PyTorch and TensorFlow, NN

layers/modules are actively constructed via primitive operators when the NN is running.
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We notice that primitive operators, such as sum, copy, etc., induce considerable ciphertext

collisions, leading to pervasive leakage sites. After investigating the patterns of ciphertext

collisions, we find that the root cause of leakages in interpreters is similar to that in ex-

ecutables: the non-linear functions map floating-point values to a smaller range or fixed

ones, greatly increasing the possibility of collisions.

Overall, the convolution modules are popular in classical NNs. Matrix multiplication

functions like bmm are building blocks of fully connected layers and self-attention modules

in Transformer-based NNs. Similarly, kernel computation is extensively used in max-

pooling, average-pooling modules, etc. These modules exist in nearly all modern NNs,

indicating the severity and the pervasiveness of the attack surface.

Attack Surfaces under Various Scenarios

Setup. This section presents input recovery towards our localized modules in Sec. 4.7.1

and studies how the results are affected by different attack scenarios. For the FP of Py-

Torch and TensorFlow, since most NN layers share the same primitive operators, we do

not observe notable differences due to the choice of the target primitive operator. For Py-

torch BP, we choose auto-grad functions to study BP’s specific leakage. In TensorFlow,

because both FP and BP adopt GEMM functions, to specifically study BP’s leakage, we

choose GEMM functions that are not involved in FP.

In executables generated by TVM and Glow, NN layers are implemented as standalone

functions. For Glow executables, this section reports results on functions derived from

deeper layers. Since layers at different depths contribute differently to the NN’s predic-

tions [280, 84], we further evaluate how the depths of layers affect the input recovery

in Sec. 4.7.3. For TVM executables, we focus on layout transformation functions which

primarily induce the leakage.

Table 4.4 presents our results. Below, we analyze them from several aspects and sum-

marize eight key findings.

Knowledge of Input Domain. As in Table 4.4, the attack results can be improved with

more knowledge of the input domain. Note that for ZK cases, the target NN performs

5-class classification, whereas the NN classifies 10 classes in PK and FK cases. Although
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the PC and TC results of ZK are comparable to PK in some settings, PK cases should

have better results. Overall, our attack achieves encouraging results even in PK and ZK

settings. To steal the target NN’s functionality, previous attacks (even when the predic-

tion confidences are available) are “upper-bounded” by the knowledge of input domain.

Specifically, attackers only steal the target NN’s partial functionality on their known input

domain. E.g., if attackers only have digit 1, their own NN trained with queried predic-

tions can only predict 1. That is, query-based attacks at most achieve 50% and 0% TC in

our PK and ZK settings, respectively. In contrast, {k1 our recovered inputs can steal the NN

functionality with more than 90% TC even in the ZK cases.

Fine-Tuning. We also study if the input recovery still applies after weights of the target

NN have been fine-tuned (as mentioned in Sec. 4.6). Compared with the initially deployed

NNs (which are queried during the offline preparation), these fine-tuned NNs have 79.6%

(on average) weights changed.

As shown in the 8th and last columns of Table 4.4, our input recovery is not affected

in all cases. Note that the internal decision logics of the fine-tuned NN remain unchanged

despite that weight values are updated (otherwise, the fine-tuning failed). Thus, we infer

that the patterns, which exist in the ciphertext side channels to facilitate recovering NN

inputs, primarily depend on the decision logic. This is reasonable since an NN’s decision

logics, to some extent, decide what information to be extracted from inputs. However, we

find that our input recovery is inapplicable to new NNs that are different from the NN we

queried offline. Therefore, we conclude that {k2 updating NN weights (due to hardening) does

not affect our input recovery unless the target NN is replaced with a new different one.

Interpreter vs. Executable. In all settings, the input recovery has better results on NN

executables than NNs running in interpreters. After investigating the logged ciphertext

side channels, we find more ciphertext collisions occur in NN executables. In fact, NN ex-

ecutables are highly optimized; their memory accesses are more compact, which increases

the chance of ciphertext collisions. Also, NN interpreters have non-determinism in some

functions (e.g., the OpenMP multi-threading [239] in PyTorch), such that some ciphertext

collisions are due to randomness, which negatively impacts the recovery. Thus, we infer

that {k3 optimizations in NN compilers have introduced substantially new ciphertext side channel

leakage of NN inputs.
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Training vs. Test Inputs. For PyTorch and TensorFlow, the recovered training inputs have

higher PC than user test inputs. Note that existing works find that NNs can memorize

some training inputs [227, 40], we suspect that such memorization eases recovering train-

ing inputs. This gap may not be obvious in cases of higher leakage (e.g., in executables),

but is enlarged when the leaked information is slimmer (e.g., in interpreters). To con-

clude, {k4 compared with test inputs, training inputs are more likely to be leaked via ciphertext

side channels.

Functionality vs. Input. The recovered training inputs usually have higher TC than PC

in Table 4.4. We interpret the result from two aspects. First, our technique ensures the

realism of recovered inputs by modeling p(x); see Sec. 4.5. Despite that some recovered

inputs have inconsistent predictions with ground truth inputs, they are still valid and

meaningful NN inputs. This highlights the merit of our design considerations. Second,

PC may have more restrictive requirements: to retain the prediction, full details of the

input should be recovered. Nevertheless, even if some details are missed in the recovered

input (thus making the NN change its prediction), the recovered input is still useful as

one training sample because it reflects the target NN’s decision logics on the partially

recovered image details. Therefore, we conclude that {k5 NN functionality has more severe

leakage via ciphertext side channels.

FP (Forward) vs. BP (Backward). For both PC and TC, inputs recovered from the FP

phase have better results. Intuitively, FP primarily extracts features from inputs, whereas

BP computes gradients which reflect the NN’s decision logics. Thus, the leakage in FP is

more informative to recover NN inputs. We conclude that {k6 NN input leakage during FP is

more informative than BP.

PyTorch vs. TensorFlow. As in Table 4.4, attack results over PyTorch and TensorFlow

exhibit varying trends on FP and BP. We discuss them below.

Forward: Memory Usage. Compared with TensorFlow, inputs recovered from PyTorch’s

FP have better PC and TC. By cross-comparing their FP, our experiments show that Py-

Torch consumes more memory. Accordingly, more memory writes occur, increasing the

chance of ciphertext collisions. In sum, {k7 PyTorch has more leakage than TensorFlow during

FP due to its higher memory usage.
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Backward: Static vs. Dynamic Computational Graph. Different from the FP, inputs recov-

ered during TensorFlow’s BP have higher PC and TC. Also, by cross-comparing the gaps

between FP’s and BP’s results in PyTorch and TensorFlow, PyTorch cases have larger gaps.

Note that PyTorch maintains a dynamic computational graph on the fly, and it deletes

the graph when back-propagating gradients to save computing resources. Thus, with the

graph and historical computation results gradually deleted, ciphertext becomes less likely

to trigger collision (and leakage) in BP. In contrast, TensorFlow maintains a static compu-

tational graph during runtime which is fixed after initialization. Thus, the results indicate

that {k8 the static computational graph in TensorFlow induces more leakage during the BP.

4.7.2 RQ2: Complex and Diverse Inputs

This section evaluates our input recovery for more complex NN inputs. We focus on the

FP (forward) since it is involved during both inference and training. We consider Glow

and PyTorch as the representative NN compilers and interpreters in this section.

Qualitative Examples. Fig. 4.5 presents examples of recovered input images and their

ground truth. The recovered digits are almost identical to the ground truth, and CIPHER-

STEAL is able to recover digits 0-4 with only digits 5-9 under the PK and ZK cases. In cases

of face photos, these people’s identities are accurately recovered, despite that attackers do

not have face photos of the same identities. In addition, facial attributes, such as gender,

skin color, eye status, expressions, orientations, etc., are also highly consistent between

recovered face photos and ground truth. The recovered chest X-ray images also match the

size, number, and position of lung lobes and ribs in the ground truth inputs. Recovered

videos are displayed on our artifact website [7]. Overall, the recovered videos are smooth,

and each frame matches that in the ground truth videos. The person (which is unknown)

and the performed action in each video are also precisely recovered.

Quantitative Analysis. As reported in Table 4.5, we achieve encouraging prediction con-

sistency (PC) and training consistency (TC) results for diverse and more complex input

formats, indicating that our recovered inputs are capable of stealing the predictions and

functionalities of the target NNs. Table 4.6 presents results of the similarity evaluation

(SIM). Note that our similarity evaluations are conducted among inputs of the same class,

these high results (compared with the 1% baseline) demonstrate that rich details in each
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(a) Digit images under FK setting.

Recovered Ground truth

(b) Digit images under PK setting.

(c) Digit images under ZK setting.

Recovered Ground truth Recovered Ground truth

(d) Recovered face photos. (e) Recovered chest X-ray images.

Figure 4.5: Examples of recovered images and ground truth. For the ZK case in Fig. 4.5(c),
the target NN only processes digits 0-4. Recovered videos and more images are in [7].

Table 4.5: Attack results of other input formats. PC and TC denote prediction consistency
and training consistency.

Input Training Input User Test Input
PC TC PC

Glow

{kD Face photos ZK 98.6% 98.8% 98.3%{kE Chest X-ray images ZK 78.2% 90.4% 78.1%{kF Chest X-ray images PK 92.5% 94.3% 90.1%{kG 100-class images FK 95.4% 96.7% 94.7%{kH Human action videos FK 50.8% 79.0% 43.4%

PyTorch

{kD Face photos ZK 88.0% 96.8% 82.4%{kE Chest X-ray images ZK 68.7% 82.1% 68.8%{kF Chest X-ray images PK 78.9% 90.4% 77.1%{kG 100-class images FK 89.3% 91.6% 86.5%{kH Human action videos FK 34.1% 51.1% 33.9%
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Table 4.6: Similarity evaluation (SIM). Baseline is 1%.

Input Training Input User Test Input
Glow PyTorch Glow PyTorch{kA MNIST FK 98.5% 85.3% 98.3% 69.3%{kB MNIST PK 95.9% 76.7% 96.5% 63.8%{kC MNIST ZK 98.2% 81.8% 97.9% 65.0%{kD Face photos ZK 88.2% 70.7% 87.3% 70.1%{kE Chest X-ray images ZK 67.7% 58.8% 66.5% 55.4%{kF Chest X-ray images PK 85.6% 66.4% 84.5% 63.9%{kG 100-class images FK 92.1% 82.4% 92.7% 81.9%{kH Human action videos FK 51.1% 38.1% 51.5% 37.2%

image are successfully recovered. Previous techniques only apply to black-and-white im-

ages such as digit images in MNIST, and the recovered digits lose details [251]. CIPHER-

STEAL, in contrast, is not limited to specific input formats: our technique and the promis-

ing results highlight the severity of ciphertext side channel leakage in TEE-shielded NNs.

Overall, results of chest X-ray images and face photos reflect the precision of CIPHER-

STEAL and fine-grained details leaked: IDs/disease information can be recovered from ci-

phertext side channels when the attacker does not know the face ID or has only benign

chest X-ray images. Besides, recovering images of 100 classes benchmarks the scalabil-

ity of CIPHERSTEAL, i.e., simultaneously handling all of them. Note that previous at-

tacks towards data processing modules in NNs can only handle images of one class each

time [278]. Moreover, recovering videos demonstrates the generalizability of CIPHERSTEAL

since videos are sequential data and are processed by NNs having special recurrent struc-

tures; as clarified in Sec. 4.5.2, recovering videos is conceptually similar to, but technically

harder than recovering text.

4.7.3 RQ3: Side Channel Observations

This section evaluates how different ciphertext side channel observations and noises affect

our input recovery.

Logging with CipherLeak. Besides SEV-Step, we also evaluate CIPHERSTEAL by log-

ging ciphertext collisions with CipherLeak. Results are given in Table 4.7. Since CipherLeak

only records the last writes at each memory page and checks ciphertext collisions when

different pages are accessed, it is not surprising that the results are relatively lower than
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Table 4.7: Input recovery results of using CipherLeak.

Input Training Input User Test Input
PC TC SIM PC SIM

Glow

{kI MNIST FK 67.2% 85.4% 38.8% 67.1% 37.9%{kJ MNIST PK 58.7% 80.2% 37.6% 57.8% 37.7%{kK MNIST ZK 66.1% 84.4% 38.5% 64.3% 38.1%{kL Chest PK 52.6% 77.3% 26.7% 52.2% 26.3%{kM Face ZK 78.5% 86.8% 50.5% 77.7% 51.2%

PyTorch

{kI MNIST FK 66.7% 82.8% 37.6% 65.6% 38.0%{kJ MNIST PK 53.4% 79.7% 36.1% 53.2% 35.8%{kK MNIST ZK 64.3% 81.5% 38.2% 63.2% 37.5%{kL Chest PK 50.3% 76.7% 25.9% 50.6% 26.1%{kM Face ZK 73.1% 84.9% 49.4% 72.8% 49.3%

using SEV-Step. Nevertheless, the results are still promising, and remain largely higher

than the baselines.

We note that the results over interpreters and executables are very close. In Sec. 4.7.1,

we reveal that optimizations in NN executables enlarge the leakage due to more com-

pact memory accesses. However, the enlarged leakage is not significant when using

CipherLeak. Note that optimizations in NN executables primarily fuse adjacent opera-

tors, such that their memory writes are more likely to the access same addresses. However,

the accessed memory addresses of adjacent operators are presumably located on the same

page, whose collisions are likely not logged as CipherLeak only records the last writes

that occurred on the same page.

Table 4.8: Evaluations of different NN layers and granularities of SEV-Step.

Layer Input
Training Input User Test Input

PC TC PC
T = 16 T = 64 T = 16 T = 64 T = 16 T = 64

Shallow
{kA MNIST FK 92.4% 83.4% 98.1% 98.1% 92.9% 83.9%{kB MNIST PK 73.9% 58.6% 97.9% 97.8% 74.9% 58.4%{kC MNIST ZK 87.4% 71.3% 99.4% 99.6% 87.7% 73.1%

Deep
{kA MNIST FK 90.7% 59.1% 98.2% 98.2% 90.9% 60.3%{kB MNIST PK 69.1% 46.7% 97.5% 97.2% 68.9% 46.5%{kC MNIST ZK 85.0% 47.3% 99.7% 98.9% 86.1% 46.7%

Different Granularity of SEV-Step. While ciphertext side channels can be logged in a

single-step granularity via SEV-Step, multiple instructions could be executed during the

given APIC timer interval [258], such that some memory writes are periodically missed.

To benchmark such impacts on CIPHERSTEAL, we consider SEV-Step of different gran-
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ularity T, i.e., only recording every T-th memory write. We consider T = 16 and 64.

As in Table 4.8, even when T = 64 (i.e., 63 records are missed among every 64 memory

writes), the PC is still promising, e.g., over 70% in the ZK cases of shallow layer, whose

baseline is 20%. Differently, the TC is almost not affected by the granularity. This observa-

tion is consistent with our finding {k5 in Sec. 4.7.1: despite leading to different predictions,

recovered inputs are still valid and useful training samples since we ensure their realism.

Picking Leakage Sites. Different from interpreters where different layers are constructed

via primitive operators, Glow executables implement each NN layer as one standalone

function. Considering that different layers (i.e., shallow vs. deep) often contribute dif-

ferently to NN predictions [280, 29], we study how the input recovery is affected by the

choice of layers. As shown in Table 4.8, better input recovery is achieved on shallow lay-

ers. This is reasonable because NNs propagate inputs from shallow to deep layers, with

more abstracted features gradually extracted. Hence, shallow layers should retain more

information about NN inputs.

4.7.4 RQ4: Enabled Attacks

Training consistency (TC) results presented in previous sections show that our input re-

covery can largely enhance attacks that steal NN functionality. This section evaluates how

our results bring white-box adversarial examples (AEs) to fool NN predictions. As men-

tioned in Sec. 4.4.1, we train a surrogate NN using the recovered training inputs. We then

generate AEs over the surrogate NN and use these AEs to manipulate or downgrade the

target NN’s predictions.

Setup & Baseline. The manipulation attack forces the victim NNs to always predict “0” or

“benign” for digit recognition ( {kA - {kC ) and chest X-ray image diagnosis ( {kE ), respectively.

Our attack is compared with one state-of-the-art black-box adversarial attack, square at-

tacks [19], which is directly applied to target NNs. We use PGD [23] to generate white-box

AEs on surrogate NNs. We configure both algorithms to query its attacked NN (the tar-

get NN or surrogate NN) at most 20 times and the adversarial perturbations are bounded

with the maximum `•-norm of 0.3. In each setting, we generate 2,000 AEs for the attack.

Results. Table 4.9 presents attack success rates. Black-box AEs are less effective and never

succeed in 7 over 8 settings. Our attack, by leveraging the adversarial vulnerabilities in-
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Table 4.9: Evaluation of enabled attacks.

Input Downgrade Manipulation
Black-Box Ours Black-Box Ours{kA MNIST FK 0 37.8% 0 32.0%{kB MNIST PK 0 33.7% 0 29.7%{kC MNIST ZK 0 21.7% 0 22.2%{kE Chest ZK 18.85% 97.5% 0 12.0%

herited from training data, can successfully downgrade and manipulate the target NN’s

prediction with around 30% success rate for digit recognition. Downgrading chest X-ray

diagnosis (the only successful case of black-box AEs; our attack has 97% success rate) is

significantly easier than enforcing it to predict “benign” (12% success rate by our attack).

To explain, the diagnosis relies on fine-grained details in X-ray images, and adding adver-

sarial perturbations can easily break those details to mislead the prediction. Nevertheless,

manipulating the prediction to benign requires hiding all disease-related details which is

more challenging.

Our attack is also more efficient; it only takes half of the time spent in the black-box

attack (63s vs. 122s). Training a surrogate NN takes about ⇠170s for MNIST and ⇠20 min

for X-ray images; however, this is a one-time effort.

4.8 Discussion on Countermeasures

CIPHERSTEAL, for the first time, enables recovering high-quality inputs from TEE-shielded

NNs. The recovered inputs can be further used to steal NN functionality and generate

more effective adversarial examples. As a result, the adoption of CIPHERSTEAL may raise

potential privacy and security concerns, especially in the context of TEEs. Recent work

in repairing ciphertext side channels [256] may not be directly applicable to our attack,

given that [256] primarily fixes vulnerable cryptographic code patterns that do not exist

in NNs. [146] advocates to achieve non-deterministic ciphertexts in TEEs via VMSA ran-

domization, and [257] proposes to obfuscate the memory access patterns or ciphertexts

via oblivious RAMs. However, the randomization/obfuscation may bring considerable

performance overheads.

Having that stated, we believe that there are several promising directions to mitigate
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our attack. First, from the algorithmic perspective, we can specifically design random-

ization/obfuscation schemes for NNs following the principles of [146, 257]. Unlike tra-

ditional software, the executions of NNs are essentially matrix computations, which are

resilient to non-adversarial noise in intermediate computations. Since the collisions are

induced by writing the same intermediate results to memory, negligible noise can be in-

jected into NN’s intermediate outputs on the fly to randomize the generated ciphertext.

Such randomization should yield a low cost, and the key obstacle is finding the “sweet

spot” between NN accuracy and the noise level. Existing profiling-based obfuscation

techniques [104] may be a good starting point.

In addition, inspired by our findings in Sec. 4.7.1, the following software- and system-

level countermeasures are also highly feasible. For runtime implementation, instead of

directly writing to memory, using registers to hold as many intermediate values as possi-

ble should avoid many ciphertext collisions. For optimizations in NN computation, moti-

vated by the TVM case in Fig. 4.4, we expect to leverage operator fusion to reduce memory

writes for neighboring operators. Moreover, as we observe many collisions between writ-

ten zeros and zero-initialized memory, we advocate initializing unused memory regions

with non-deterministic values to reduce the frequency of ciphertext collisions.

4.9 Conclusion

This chapter demonstrates that ciphertext side channels can be exploited to recover in-

put data from TEE-shielded NNs. We propose CIPHERSTEAL to address the information

loss and limited observation issues, and recover high-quality inputs under varied knowl-

edge of the victim. Comprehensive evaluations show the superiority of CIPHERSTEAL in

recovering NN inputs and augmenting downstream attacks.
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CHAPTER 5

THIEVING MODEL WEIGHTS FROM
TEE-SHIELDED NEURAL NETWORKS VIA

CIPHERTEXT SIDE CHANNELS

Following Chap. 4 that recovers inputs of TEE-shielded deep neural networks (DNNs), this chap-

ter shows how weights of a TEE-shielded DNN can be recovered from its ciphertext side channels.

Overall, we propose a novel viewpoint that focuses on the functionality of DNN weights, rather

than each weight element’s exact value. Accordingly, we design HYPERTHEFT to directly gener-

ate weights that are functionality-equivalent to the victim DNN using ciphertext side channels.

HYPERTHEFT is established for highly practical settings; it exhibits the weakest requirement com-

pared to prior methods. When only knowing a victim DNN’s input type and task type (which are

public and denote the minimal information required to use a DNN), HYPERTHEFT can recover its

weight using ciphertext side channels logged during the victim DNN’s one execution. The whole

procedure does not require attackers to 1) query the victim DNN, 2) have valid data that the DNN

accepts, or 3) know the victim DNN’s structure. Our evaluations generate more than 8K DNN

weights which constantly achieve 77%⇠97% test accuracy in different DNN runtimes, including

various versions of PyTorch and DNN executables. Our recovered weights can subsequently enable

training data leakage and severe bit-flip attacks.

5.1 Introduction

Deep neural networks (DNNs) have been exponentially deployed on various platforms

(e.g., cloud servers, edge devices) given their high intelligence in solving real-life tasks.

DNNs’ intelligence is encoded in their weights which are trained over humongous datasets,

with extensive human expertise and computing resources required. Nevertheless, as

DNNs are white-box accessible on the host machine, a malicious host can directly copy

their weights to steal DNN intelligence and launch white-box attacks [227, 285], posing a

major security and privacy threat to modern DNNs [125].
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To address the trust concern, Trusted Execution Environment (TEE), such as AMD

SEV [122], Intel SGX [114, 119], etc., is proposed to protect DNNs [143, 156, 110]. With

memory encryption, TEE provides isolated execution to shield a DNN as fully black-box

on the host machine. Although recent studies launched successful side-channel attacks on

TEE-shielded programs based on their secret-dependent information flows [91, 180, 245],

DNN weights are believed secure under TEE protection: modern DNNs implement a

constant-time computation paradigm, where the computations are achieved as a sequence

of matrix operations with constant1 data/control flows, eliminating mainstream micro-

architecture side channels [285, 105].

Despite the promise, this chpater uncovers severe DNN weight leakage due to the

ciphertext side channel [149, 146] recently disclosed in AMD SEV.2 Essentially, modern

TEEs adopt deterministic encryption to support efficient random memory access and large

memory encryption [146, 69], and the ciphertext of each memory write value only de-

pends on the plaintext and the written address. Hence, if attackers observe that the

ciphertexts of two consecutive memory writes at the same address do not change (i.e.,

ciphertext collision), they can infer the equality relation between two plaintext written

values [149, 146]. Intuitively, as matrix computations inside a DNN involve nested loops

with DNN weights, which often repeatedly access the same memory address, ciphertext

collisions should correlate with DNN weights to a large extent.

Yet, recovering DNN weights from ciphertext collisions is inherently challenging due

to the following reasons.

¨ A More Challenging Threat Model. Unlike cryptographic software (i.e., the attack tar-

get of prior ciphertext side-channel attacks [149, 146]) whose implementation details are

known to attackers (e.g., the RSA algorithm is public), the computation graphs of DNNs

are often private. Thus, attackers only have a ciphertext side channel trace consisting of all

ciphertext collisions logged from the victim DNN’s whole execution. They cannot inves-

tigate how each weight element is involved in DNN computations and is consequently

1Recent works have proposed the multi-exit DNN [157] whose execution may terminate early for some
inputs. However, multi-exit DNN’s control and data flows only depend on the final predictions and do
not leak DNN weights.

2Practical attacks have been demonstrated on AMD SEV and reported to the vendor; yet, the attacks are
feasible to any deterministic-encryption-based TEEs via hardware attacks such as memory bus snoop-
ing [141], cold boot attack [92], etc.
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leaked via each ciphertext collision.

≠ Partial Leakage of DNN Weights. The ciphertext side-channel leakage in cryptographic

software is lossless, as it is due to memory writes directly determined by each private

key bit [149, 146]. However, memory writes of a DNN’s execution rely on intermediate

computing results derived from the weight, ciphertext collisions therefore do not leak all

weight elements. Since a DNN often has millions of weight elements which are highly

correlated, failing to recover a few weight elements can result in non-functional DNNs

whose predictions are purely random [206, 268].

Æ Over-Strong Requirements of Query Attacks. One may conduct query-based attacks,

which use a student model to duplicate confidence scores of a DNN’s predictions over

query inputs [198, 235, 116, 47], to imitate the victim DNN’s behaviors. However, TEE-

shielded DNNs do not return confidence scores, greatly increasing the cost of query-based

attacks [285]. While recent hardware attacks can be adopted to reduce the cost by recov-

ering partial DNN weights, they require knowing the DNN’s structure (which can be pri-

vate) and are limited to quantized DNNs [205]. Importantly, the query inputs must cover

all classes of the victim DNN’s training data, which is impractical if the DNN is trained on

private datasets like medical images. Noteworthy, training a student model to generate

identical ciphertext collisions as the victim DNN is also infeasible, as the generation of

ciphertext is non-differentiable.

Solution: A New Perspective of DNN Weights. This chapter takes a holistic view on

DNN weights by considering the victim DNN’s functionality of solving its intended task.

Instead of recovering exact weight elements (i.e., conventional ciphertext side-channel

attacks) or duplicating a DNN’s predictions for specific inputs (i.e., prior query-based

attacks), we present a novel and highly effective technique to represent and extract func-

tionalities from ciphertext side channels of unknown DNNs performing unknown tasks.

Specifically, we design a hyper-network, HYPERTHEFT, that takes ciphertext collisions

logged from the victim DNN’s execution (i.e., a ciphertext side-channel trace) as inputs

and directly outputs functional weights for a surrogate model. With weights generated from

HYPERTHEFT, the surrogate model is able to solve the victim DNN’s task. The surrogate

model may have the same or different structure as the victim DNN, depending on the

attacker’s knowledge.

97



HYPERTHEFT delivers highly stealthy and generic attacks. It considers both regression

and classification, two fundamental tasks of all modern DNN applications such as image

recognition, disease diagnosis, financial forecast, etc. To attack a DNN performing regres-

sion or binary classification, HYPERTHEFT only requires ciphertext collisions from its one

execution. For k-class classification (k > 2) — in case k is unknown — HYPERTHEFT de-

couples it as k different binary classifications (i.e., belonging to the k-th class or not), and

generates weights for k surrogate models (with each one for a binary classification) by

observing the victim DNN’s (minimal) k executions. Further, inspired by stochastic train-

ing algorithms of DNNs (e.g., SGD [17]), we introduce stochasticity into HYPERTHEFT’s

weight generation, such that multiple functionality-equality weights can be generated us-

ing only one side-channel trace; the corresponding surrogate models (for the same task)

can form a majority voting to further improve their accuracy.

Practicality: The Weakest Knowledge. Distinct from all prior weight stealing techniques,

HYPERTHEFT does not interact with the victim DNN; it only passively observes cipher-

text side channels without querying the victim DNN. Thanks to our well-designed train-

ing algorithm for hyper-network (see Sec. 5.6), HYPERTHEFT does not require valid data

accepted by the victim DNN (compared with query-based attacks). Additionally, empow-

ered by our functionality-centric view, HYPERTHEFT does not rely on the victim DNN’s

structure and is applicable to general DNNs (compared with prior hardware attacks [205,

272]). In Sec. 5.8.2, we employ HYPERTHEFT to generate more than 8K weights under this

weakest-knowledge setup, and these weights constantly achieve 77%⇠97% test accuracy. To

comprehensively assess the real-world threats, Sec. 5.8.3 evaluates how those stronger as-

sumptions in prior works, e.g., knowing the DNN structure or querying the DNN (which

may hold in certain scenarios), can further boost HYPERTHEFT.

Findings: Broad Attack Surface. HYPERTHEFT can successfully steal weights from pop-

ular DNNs (e.g., Transformer, ResNet, etc.) performing various classification and regres-

sion tasks over representative datasets (e.g., ImageNet, Chest X-ray, etc.). We consider

different runtimes of DNNs: the most popular deep learning (DL) framework PyTorch

and the recent DL compiler, Glow [210], that compiles DNN models into executables. We

also systematically evaluate various versions of PyTorch and consider different usages of

TEEs (i.e., shielding full DNNs or DNN slices). Our recovered weights constantly achieve
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the objectives of stealing DNN intelligence and enabling white-box attacks against the

victim DNN. Although the recovered weights are never trained using the victim DNN’s

training data, they largely enhance membership inference attack [227, 40] to leak the train-

ing data. The recovered weights also bring bit-flip attack [206, 268], which can globally

decimate DNN intelligence for nearly all (benign) inputs. In sum, the work presented in

this chapter makes the following contributions:

• For the first time, we unveil the high risk of leaking DNN weights via ciphertext side

channels of TEE-shielded DNNs, despite that weights in vanilla DNNs (unprotected

by TEEs) are free of mainstream micro-architecture side channels. We demonstrate that

such weight leakage subsequently enables stealing DNN intelligence and launching

white-box DNN attacks.

• To overcome technical hurdles of recovering DNN weights, we propose to directly gen-

erate functionality-equivalent weights from ciphertext side channels. We design HY-

PERTHEFT, which can recover DNN weights passively with only negligible and the

weakest knowledge of the victim DNN. HYPERTHEFT applies to general DNNs and is

capable of recovering DNN weights by observing only a few executions of the victim

DNN.

• We comprehensively evaluate diverse and representative DNNs, datasets, DNN run-

times, and TEE usages, where HYPERTHEFT can constantly recover DNN weights from

ciphertext side channels. We also systematically assess how public knowledge in vari-

ous scenarios can boost HYPERTHEFT’s capability, and conduct membership inference

and bit-flip attacks based on HYPERTHEFT’s recovered weights.

Research Artifact. The code and data of this chapter are available at: https://sites.
google.com/view/hyper-theft [8].

5.2 Preliminaries and Background

5.2.1 DNNs and Terminologies

Since many terms (e.g., parameter vs. weight) of DNNs are not used consistently in ex-

isting literature, to avoid ambiguity, we first briefly introduce DNNs and give concrete
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definitions for terms related to this chapter.

A DNN F = . . . fi+1 � fi � fi�1 . . . consists of multiple connected layers and each layer

is a function f (x) = s(qx + b) where s is the non-linear activation function. The computa-

tion graph is often constant in modern DNNs and does not change in different executions.

Each DNN is designed to solve an intended task by assigning the prediction y to an input

x. Depending on whether y is discrete or continuous, the task is categorized as classifica-

tion or regression, respectively. A DNN’s capability of solving its task is formed during

the training stage, which updates [q, b] using the training data. The trained DNN can run

with various runtimes, depending on its deployed platform.

Definitions. We define the following terms for this chapter.

• DNN Weight: q and b are often dubbed as weight and bias of f . To ease the presentation,

we refer to both q and b as a single singular term “weight” in the rest of this chapter. In

particular, the term “DNN weight” in this chapter denotes [q, b] of all layers in a DNN. Since

[q, b] constitute a matrix, we refer to elements of matrix [q, b] as “weight elements”. We

use the uppercase W to denote DNN weight, and the lowercase wi to indicate weight of

the i-th layer. Similarly, F denotes a DNN and fi indicates its i-th layer.

• Functionality & Behaviors: A well-trained weight W can enable a DNN’s intelligence,

which is reflected in two aspects: 1) the overall functionality of solving the DNN’s in-

tended task (e.g., classifying digits); and 2) the behavior of predicting y⇤ for a specific

input x⇤.

• DNN Structure & Parameters: Following prior literature [266, 81], structure denotes the

computation graph of a DNN, which includes 1) the number of layers, 2) how each layer is

implemented, and 3) how different layers are connected. For instance, LeNet and ResNet

are two different structures. Parameters indicate the hyperparameters in DNN structures,

e.g., kernel sizes in convolutional layers.

• Task Domain: DNNs are designed to provide predictions from a fixed set.3 For example, a

DNN classifying cat vs. dog only outputs cat or dog even given a horse image. Therefore,

to have meaningful predictions, DNNs also require valid inputs. The validity of inputs

is determined by the DNN’s task, for example, if a DNN classifies cat vs. dog, its valid

3Text DNN’s outputs are concatenated using words from a fixed vocabulary.
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inputs must be cat or dog images. Here, cat & dog images form the “task domain” of the

DNN.4

• Input Type: To distinguish the subtle difference between public and private information

of DNN’s valid inputs, we further define “input type” over the task domain. Consider

two medical diagnosis DNNs that accept chest X-ray images. Suppose the two DNN de-

velopers have training images of non-overlapping diseases, these two DNNs will support

diagnosing different diseases, leading to different task domains. However, they share the

same input type of “chest X-ray” image. Note that the cat & dog images mentioned

above are from a different input type of “natural” image [33, 21]; see more cases in

Sec. 5.8. In practice, having data from the victim DNN’s task domain may be impracti-

cal, as these data are often private (e.g., medical images of certain diseases). However,

obtaining data sharing the same input type with the victim DNN is often feasible (e.g.,

medical images of benign cases). Previous query-based [235, 116, 47] and hardware at-

tacks [205, 272] require data covering the victim DNN’s full task domain, while our work

loosens the requirement to only input type, delivering a more practical attack.

Hyper-Network. A hyper-network is a special DNN that generates weights for a tar-

get DNN [50, 94, 209]. The machine learning community has designed various hyper-

networks to study the statistics of DNN weights for a specific task [209, 287]. Nevertheless,

conventional hyper-networks require data from the same task domain of the target DNN,

and only generate weights of identical functionality, impeding their application in steal-

ing DNN weights. By carefully designing the training algorithm of hyper-networks (see

Sec. 5.6.2), our work presents a task-wise generalizable hyper-network, which can gener-

ate weights for the target DNN (i.e., the attacked TEE-shielded DNN) without using data

from its task domain. By leveraging ciphertext side channels from the target DNN, our

generated weights can exhibit different unseen functionalities.

5.2.2 TEE Protection and Mitigated Attacks

Model Stealing. Besides preventing attackers from copying DNN weights, TEE also mit-

igates query-based model stealing [198, 235, 116, 47] (a.k.a., knowledge distilling). To

4The task domain is also referred to as “problem domain” in existing literature [191].
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understand how the mitigation works, we first elaborate on motivations behind this at-

tack. Typically, attackers first query the victim DNN using their own data and then train

a student model to duplicate the victim DNN’s prediction confidences (i.e., an input’s

probabilities of belonging to all possible predictions) on the queried data. Because DNN

training is data-intensive and costly, query-based attacks aim to obtain a functionality-

equivalent student model using fewer training data (i.e., the queried data) guided by the

victim DNN’s confidence scores. TEE-shielded DNNs mitigate such attacks by only re-

turning the prediction without confidence scores [285]. Thus, despite that attackers can

still query a TEE-shielded DNN, they only label their queried data and the attack’s cost

becomes comparable to training a new DNN from scratch [285]. Note that the query data

must cover the TEE-shielded DNN’s full task domain; if the query data are from a subset

of the task domain, the student model only learns the victim DNN’s partial functionality

w.r.t. this subset [285, 116, 47, 235].

The black-box view of TEE-shielded DNNs also mitigates the following popular DNN

attacks.

Data Privacy: Membership Inference. Membership inference attack (MIA) [227, 40] aims

to infer if an input is included in the victim DNN’s training data — a successful MIA

indicates a severe training data leakage. Existing attacks primarily leverage DNN’s pre-

diction confidence, intermediate results, and/or gradients to infer membership of a given

input. Since TEE-shielded DNNs are purely black-box5 and only return final predictions,

no available information can be leveraged to infer an input’s membership.

DNN Integrity: Intelligence Depletion. Unlike adversarial attacks that only fool a DNN

to mis-classify the crafted adversarial examples, bit-flip attack (BFA) can globally deplete

DNN intelligence such that the victim DNN randomly guesses predictions for almost all

(non-adversarial) inputs [206, 268, 151]. To launch BFA, attackers first require localizing

weight elements that are critical to the DNN’s intelligence and then leverage rowhammer

attacks [126] to flip bits of these weight elements. The localization process is conducted

by computing gradients over different weight elements, which is prohibited by the black-

box view of TEE-shielded DNNs. As a result, attackers have to randomly flip bits in a

5Note that previous MIA works assume that “black-box” DNNs return prediction confidence [166], which
is different from the black-box in our context.
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DNN’s weight, which is impractical due to the massive search space and the high cost of

rowhammer attacks [206, 268].

5.2.3 TEE and Ciphertext Side Channel

TEEs leverage memory encryption to create isolated execution environments for secure

DNN computations, where other users and software stacks (e.g., guest kernel, OVMF)

cannot access the encrypted memory. The encryption engine encrypts/decrypts memory

data on-the-fly and is implemented as a hardware module between the CPU chip and

DRAM.

Deterministic Encryption. Two factors must be considered by TEE. First, efficient ran-

dom memory access that requires independently encrypted memory blocks. Second, en-

crypting large memory where additional space and latency are needed for counters. To

meet these requirements, modern TEEs including AMD SEV [122], ARM CCA [20], In-

tel TDX [114], and Intel SGX on Ice Lake SP [114, 119], adopt the deterministic-mode AES

encryption. Specifically, given a memory block, to encrypt its memory value v, the encryp-

tion first takes a tweak function T to calculate a mask m = T(a), where a is the address

of the block. The encrypted ciphertext is generated as c = P(v� m)� m, where P is the

encryption function. Therefore, when the same value v is stored at the same address a, the

generated ciphertext is always identical (i.e., ciphertext collision).

Leakage Due to Ciphertext Collision. Existing works have leveraged ciphertext colli-

sion to infer the plaintext private keys of TEE-shielded cryptographic software [149, 146].

The attack workflow is illustrated in Fig. 5.1: {ka the attacker observes ciphertexts gen-

erated from two consecutive memory writes at the same address. If ciphertexts do not

change, the two written values should be identical. In contrast, if ciphertexts change,

different values are written. {kb Based on the cryptographic software’s implementation,

the attacker manually investigates which instruction induces the ciphertext collisions and

consequently infers the plaintext private keys.

Essentially, a similar procedure can be applied to TEE-shielded DNNs. When a TEE-

shielded DNN is executing, the attacker observes ciphertext collisions of its memory writes.

Nevertheless, as the victim DNN’s computation graph is often private, the attacker can-
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not map ciphertext collisions back to their corresponding DNN computations — only a

ciphertext side-channel trace that records ciphertext collisions from all the victim DNN’s

memory writes is available. Our community still lacks techniques to extract DNN weights

from ciphertext side-channel traces.

movss [addr], xmm0
movss [addr], xmm1
movss [addr], xmm2
movss [addr], xmm3

TEE

c0
c1
c2
c3

Ciphertext

Y
N
Y

Collision

Exploitation Phasea

BIGNUM t = {0};
while(i < 1024)

t[0]= key[i++];

b Analysis Phase

Source code0
1
1
Simple form
Small space

Figure 5.1: The workflow of ciphertext side-channel attacks.

5.3 Application Scope

As shown in Fig. 5.1, a ciphertext side-channel attack consists of two main phases: {ka an

exploitation phase that collects side channels from the victim, and {kb an analysis phase that

recovers secrets from the collected side channels. In previous attacks towards crypto-

graphic software, the analysis phase is conducted by manually analyzing how different

execution states of the victim affect ciphertext collisions [149, 146]. This is feasible given

the public source code. Cryptographic keys also have a simple form and a small search

space; each key only has 1⇠2K independent binary bits and these bits directly determine the

ciphertext collisions.

However, manually analyzing how DNN weights affect ciphertext collisions is hardly

doable. In practice, the implementation of the victim DNN is often private [285], such that

attackers cannot investigate how ciphertext collisions are induced by different computa-

tion operators. On the other hand, ciphertext collisions in TEE-shielded DNNs are not

due to writing weight elements to memory since weights have been preloaded before the

execution. Instead, the collisions are induced by a small portion of intermediate compu-

tation results of the DNN. As a result, ciphertext side channels only leak partial and indirect

information of DNN weights, whereas cryptographic keys are fully leaked in prior works.

104



Moreover, modern DNNs have millions of weight elements, and each weight element

is a floating-point number with an unconstrained range under the specified precision,

leading to an almost infinite search space. Importantly, DNN weight elements are highly

correlated — a few incorrectly recovered weight elements (since not all of them are leaked)

can result in a non-functional DNN, e.g., 1⇠5 incorrect ones out of ⇠10M weight ele-

ments as shown in previous works [206, 268, 151], denoting a failed attack. This high

integrity requirement of DNN weights is fundamentally different from cryptographic keys

where each bit is independent: even partially recovered bits can be sufficient for practical

attacks [188, 252].

Prior works have proposed side-channel analysis techniques for various DNN secrets,

e.g., DNN structure [81], DNN input [278], etc. Nevertheless, since DNN weights are

free of mainstream side channels, the corresponding analysis approach is rarely studied.

Therefore, this chapter proposes a DNN weight analysis technique to complete the puzzle

of DNN secret research, and bridges it with ciphertext side channels to study the threats

of TEE-shielded DNNs. Aligned to previous analysis works [278, 81], we do not present

a new exploitation tool ( {ka ) because existing tools are relatively mature. Rather, we fo-

cus on the analysis phase ( {kb ) and design HYPERTHEFT to automatically generate DNN

weights from already-prepared ciphertext side channels. We aim to greatly ease the attack

requirements and enhance the attack performance. HYPERTHEFT is designed to support

any exploitation tools if available (e.g., CipherLeak [149], SEV-Step [259]).

Table 5.1: Knowledge required by existing attacks and HYPERTHEFT. Alg. indicates algo-
rithmic query-based attacks and HW indicates hardware side-channel attacks. ! denotes
public knowledge. Task Type and Input Type are public and required by all existing
works. +++ and ��� indicate “required” and “not required” for private knowledge. Predic-
tion confidence (Conf.) of TEE-shielded DNNs is not available in all cases.

Observation Target DNN DNN Knowledge Data Knowledge QueryTask Type Conf. Struct. Input Type Task Domain

Alg. [273, 198, 235] Pred. Conf. General DNN ! +++ ��� ! +++ +++[116, 47, 193], etc.

HW
DeepEM [272] Electromagnetic Bin. DNN ! +++ +++ ! +++ +++
DeepSteal [205] Rowhammer [126] Quant. DNN ! ��� +++ ! +++ +++
HYPERTHEFT Collision [149] General DNN ! ��� ��� ! ��� ���
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5.4 Threat Model and Related Works

This section elaborates on the threat model and required knowledge of our work, and

compares our technique with prior methods. We omit existing works that hypothesize

secret-dependent computations of DNNs (e.g., a DNN prunes its weight for different in-

puts [113]), assume most DNN weight elements are public [36, 263], or perform brute-

force guesswork [28, 75].

TEE-Protection. We assume TEE and its provided protection are functioning properly and

faithfully. Specifically, the encryption algorithm of TEE is secure and attackers cannot de-

crypt ciphertext. Only ciphertext side channels due to deterministic encryption (i.e., a

design feature of TEE) are exploitable. Also, all software and hardware involved in TEE

are secure; attackers cannot alter their data or control flows to leak secrets. The DNNs de-

ployed inside TEE are conventional DNNs: they are designed and trained normally with-

out any carefully crafted structure or adversarial injections to enable or amplify leakage.

The TEE-shielded DNN is fully black-box: attackers cannot view its inputs, (intermedi-

ate) outputs, structure, and weight. When querying the TEE-shielded DNN, only the final

prediction (without confidence scores) is returned to users.

Attacker. Consistent with the objective of shielding DNNs with TEEs, we assume an un-

trusted host machine (e.g., a malicious hypervisor, or the host OS) which has full system

privileges. Thus, attackers can read the content (i.e., encrypted ciphertext) and address

of a memory write via direct software access (as demonstrated on AMD SEV [149, 146]).

Besides, attackers are also capable of conducting physical attacks on TEE-shielded DNNs.

For instance, attackers can leverage memory bus snooping to read the ciphertext, as ex-

ploited on Intel SGX [141]. Having that said, we do not assume a specific ciphertext side-

channel exploitation approach; we aim to provide an out-of-the-box solution to automat-

ically generate DNN weights from already-prepared ciphertext side channels.

Attacker’s Goals and Incentives. Leaking DNN weights brings the following two threats.

1. Stealing Intellectual Property (IP). The key IP of a DNN is the intelligence encoded in its

weight, which produces considerable commercial values. Training DNN weights requires

substantial manual efforts to build training data (which are often private) and human

expertise to design the training algorithm.
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2. Launching White-Box Attacks. As introduced in Sec. 5.2.2, the white-box access to DNN

weights enables severe attack chances, compromising data privacy [227, 40] and breaking

DNN integrity [206, 268, 151].

This chapter recovers DNN weights from ciphertext side channels by generating weights

of equivalent functionality. Despite being different from the victim DNN’s weights, our

recovered weights fulfill the two attack goals (as evaluated in Sec. 5.8 and Sec. 5.9).

Target DNNs. Unlike existing attacks leveraging characteristics of certain specific DNNs

(e.g., binarized DNNs whose weight elements are either 1 or -1) [272], ciphertext side-

channel attacks exploit the defects in TEE’s design. Therefore, our technique applies to

any general DNNs as long as they are “protected” by TEEs.

5.4.1 Attacker’s Knowledge and Actions

Our technique is established for highly practical attack scenarios and assumes attackers

having the weakest knowledge of the victim DNN, i.e., only minimal information that

specifies the DNN’s basic usage — without them, attackers do not even know how to

use the stolen DNN and the stealing accordingly becomes meaningless. Specifically, we

consider that attackers only know the input type (as defined in Sec. 5.2.1) and the task type

(i.e., classification or regression, which decides whether DNN predictions are discrete or

continuous). We clarify that input type and task type are public in TEE-shielded DNNs

and are also required by all existing attacks.

On the other hand, our technique does not only apply to this weakest-knowledge set-

ting; it also supports incorporating stronger knowledge if available. Table 5.1 lists the

attacker’s knowledge required by existing works. Below, we discuss their (in-)availability

under various considerations and how our technique can be further enhanced with them.

DNN Knowledge. As in Table 5.1, all existing works require knowing the victim DNN’s

task type. Here, the task type only distinguishes regression vs. classification and specifies

the DNN’s output format (i.e., continuous or discrete). It does not indicate the number of

or which classes that a classifier can predict (since they are private). Existing query-based

attacks require having the victim DNN’s confidence scores, which are always unavailable

in TEE-shielded DNNs [285]. Previous hardware attacks (those speed up query-based
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attacks [272, 205]) rely on the victim DNN’s structure. However, HYPERTHEFT works

without the structure information given our functionality-centric view and the carefully

developed hyper-network; see Sec. 5.6 and Sec. 5.8.

While DNN structure is protected by TEEs, considering that DNN structure can be

leaked via cache side-channel attacks [105, 266, 167] and TEEs are exploitable through

cache side channels as well [190, 91, 180, 245], it is reasonable to also evaluate a stronger

attacker with the structure knowledge. Hence, to comprehensively assess the threat,

Sec. 5.8.3 further study how the structure information may enlarge the weight leakage.

Data Knowledge. All previous works assume knowing the victim DNN’s input type and

having data from the victim DNN’s task domain (see definitions in Sec. 5.2.1), because

they must train the student model to make it functional. However, this assumption does

not always hold. For example, when attacking medical DNNs, data containing certain

diseases may not be publicly available. HYPERTHEFT directly generates functional DNN

weights (from ciphertext side channels) without training them. Importantly, HYPERTHEFT

is task-wise generalizable: it can generate weights of unseen functionalities without data

from the corresponding task domain.

In case data from the victim DNN’s task domain are available, HYPERTHEFT’s gener-

ated weights can be leveraged to initialize the student model for queried-based attacks,

significantly reducing the query cost when attacking TEE-shielded DNNs (see Sec. 5.8.3).

Attacker’s Action. As marked in Table 5.1, all prior attacks assume an active attacker who

can frequently query with the victim DNN. In practice, such action is often limited by

the query budget (i.e., the number of queries). For instance, querying commercial DNNs

incurs economic cost and DNN service providers may limit the number of queries. Our

technique, in contrast, enables a passive attack: the attacker does not need to query the

victim DNN, but only passively records ciphertext side channels when the victim DNN

is executing. HYPERTHEFT is also highly stealthy: it only requires ciphertext side channel

traces logged from the victim DNN’s a few executions (with each one for a binary clas-

sification), and the cost of developing HYPERTHEFT is comparable to training a student

model as in prior attacks (as elaborated in Sec. 5.6).
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5.5 Explorations and Insights

In this section, we explore key properties of DNN weight and functionality that inspire

our technique. We start by visualizing DNN weights w.r.t its performance. Since DNN’s

expressiveness is supported by its non-linearity, we use the XOR problem, a non-linear

task, as a representative example. The XOR task is defined as a binary classification: given

an input x 2 R2, the ground truth label is decided as y = (x[0] > 0) � (x[1] > 0). We

set a two-layer DNN structure and train 40K different DNNs with this structure to solve

the XOR task. These DNNs have varied test accuracy ranging from ⇠50% (i.e., random

guess) to >99.9% (i.e., nearly perfect prediction). This way, we obtain 40K different DNN

weights having different performances for the same XOR task.

Figure 5.2: Visualization of different DNN weights w.r.t. their accuracy. Each dot denotes
one DNN weight, and its coordinates (which are normalized into [�1, 1]) represent the
values of weight elements. Weights of > 80% accuracy are marked in red. For blue dots
(i.e., weights having  80% accuracy), a more transparent color indicates lower accuracy.

We then project these weights onto a two-dimensional space via PCA [200] to ease the

visualization. As shown in Fig. 5.2, each dot denotes one DNN weight and its coordinates

indicate the values of weight elements. Red dots mark DNN weights having > 80% test

accuracy, which can be deemed as functional DNN weights since they enable DNN in-

telligence. The remaining weights are blue-colored where higher transparency indicates

lower accuracy. Fig. 5.2 reveals that, functional DNN weights (i.e., red dots) sparsely and

discontinuously distribute in the whole space. Therefore, we have the following two con-

clusions.
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First, slightly perturbing a few weight elements (i.e., changing a dot’s coordinates in
Fig. 5.2) can turn a functional weight (red dot) into a non-functional one (blue dot). Sec-
ond, DNN weights of distinct elements (i.e., two far-flung red dots) can have equivalent
functionality (i.e., solving the XOR task).

Motivation. The first conclusion is aligned to results in prior DNN attacks, which demon-

strate that changing a few (out of millions) weight elements can totally deplete DNN in-

telligence [206, 268]. It also renders the impracticality of per-element recovery of DNN

weights: as long as the exact value of a weight element is not recovered under this scheme

(e.g., some elements are not leaked), the inferred DNN weight is likely non-functional.

The second conclusion can be drawn from DNN training, whose different runs generate

distinct but equivalent weights. It is also aligned to existing DNN pruning works, where

a DNN’s functionality remains same after replacing more than 90% of its weight elements

with zeros [288]. This conclusion sheds light on the feasibility of recovering different but

functionality-equivalent DNN weights from partial observations of the victim DNN’s weight.

(a) Decision boundary of digit “0” (b) Decision boundaries of three classes

W1 = [1.33, 0.75, 1]
W2 = [0, 0.75, 1]

W0 = [-1.14, 0.75, 1]

d

Figure 5.3: Decision boundaries for three classes.

DNN Functionality. A DNN’s intended task uniquely decides its functionality. Fig. 5.3

shows an example where a DNN, whose last layer is y = Sigmoid(qx + b)6, classifies

three clusters of digits “0”, “1”, and “2”. This task requires the DNN to split the input

space (which consists of all valid digits “0”, “1”, and “2”) to separate different digits. The

DNN accordingly forms the required functionality by training q and b. Each row in the

concatenated matrix W = [q, b] indicates a line drawn by the DNN. Given the trained

6The Sigmoid activation function is commonly used to output class probabilities.
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weight:

q =
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1
1

3

5 , (5.1)

the first row [q0, b0] = [�1.14, 0.75, 1] is marked as the red line, q0 · x + b0 = 0, in Fig. 5.3(b).

After drawing all three lines as in Fig. 5.3(b), the DNN’s is capable of classifying digits.

Overall, DNN structure (i.e., the dimension of W) reflects how many lines are drawn, and

DNN weight decides where and how to draw these lines.

Intuitively, each row of [q, b] also characterizes a binary classification. In Fig. 5.3(a), the

red line separates “0” from other digits (i.e., classifying if a digit is “0”). Similarly, the blue

and green lines in Fig. 5.3(b) (derived from the second and third rows of [q, b]) classifies if

a digit belongs to “1” or “2”, respectively. As in Eq. 5.1, despite that the three rows of [q, b]

only differ in the first element, they represent distinct functionalities for different binary

classifications; this is consistent with our first conclusion delivered from Fig. 5.2.

Intermediate Outputs Reflect Functionality. Given an input x, each layer’s output (a.k.a.

the intermediate output) describes x’s relative position w.r.t. the lines drawn by this layer.

Considering Fig. 5.3(a) where an input is marked as the black dot, suppose the first ele-

ment of its intermediate output (from the layer we discussed above) is �d (d > 0), we

know that x is below (since �d < 0) the red line q0 · x + b0 = 0 and the distance is d
|q0|

(see proof in Sec. 5.12.2). With this information, we can infer that the first row of [q, b]

corresponds to a line that locates in the region covered by the purple lines in Fig. 5.3(a).

While in large DNNs, the above case may become more complicated due to layer prop-

agations and the high non-linearity, we can safely conclude that a DNN’s intermediate

outputs reflect its functionality. Furthermore, given that ciphertext collisions are due to

intermediate computations of TEE-shielded DNNs, it is therefore reasonable to believe

that DNN functionality can be reflected from ciphertext side channels.

Generating Functionality-Equivalent Weights. Taking all the insights above, we see the

infeasibility of recovering exact weight elements in the context of ciphertext side-channel

attack. However, since ciphertext side channel can reflect DNN functionality, we aim to

directly generate functionality-equivalent weights from the victim DNN’s ciphertext side

channels. To achieve this, the key obstacles are how to properly represent and extract
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DNN functionality from ciphertext side channels, and how to limit the required victim’s

knowledge to only public information. Below, we introduce our solution in Sec. 5.6.

5.6 Solution and Technical Details
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Figure 5.4: Workflow of HYPERTHEFT. In Fig. 5.4(a), F and its input, output, and weight
W are protected by TEEs. HYPERTHEFT only takes F’s one ciphertext side channel trace s
as input and generates a different but functionality-equivalent weight Ŵ for a surrogate
model F̂ . F̂ has a different structure from F. Fig. 5.4(b) illustrates how our training “data”
are constructed as different binary classification (or regression) tasks. In Fig. 5.4(c), we
illustrate how each training iteration is performed. Fig. 5.4(d) shows how we implement
stochastic generation via random noise e and separately generate weight ŵi for layer f̂i.

5.6.1 Overview and Goals

Fig. 5.4 illustrates the workflow of HYPERTHEFT. Similar to existing automated analysis

approaches [278, 81], our technical pipeline also consists of an offline and an online stage.

As illustrated in Fig. 5.4(a), when attacking an unknown TEE-shielded DNN F of un-

known weight W in the online stage, we collect a ciphertext side channel trace s from F’s
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execution. We then feed s to HYPERTHEFT to directly generate weight Ŵ for a surrogate

model F̂ (whose structure can be different from F), so that F̂ is functioning consistently

with F.

The offline stage exclusively develops HYPERTHEFT using attacker’s own data and

DNNs without interacting with the victim DNN; it primarily trains a hyper-network for

the weight generation. Overall, the offline stage aims to achieve the following goals:

{k1 Handling the partially leaked weight information;

{k2 Forming task-wise generalizable weight generation;

{k3 Capturing functionalities and their equivalence;

{k4 Generating functional weights from a single trace;

{k5 Supporting both regression and classification tasks;

{k6 Modeling correlations between weight elements;

{k7 Maximizing performance with limited observations.

In the following, we first introduce how to build HYPERTHEFT and the training data,

pipeline, and objective w.r.t. to the seven goals in Sec. 5.6.2. Then, we introduce our in-

depth optimizations in Sec. 5.6.3.

5.6.2 Building and Training HYPERTHEFT

Encoder and Decoder ( {k1 ). As illustrated in Fig. 5.4(a), HYPERTHEFT consists of two

components: an encoder E that converts ciphertext side channel s into a latent variable z,

and a decoder D that generates DNN weights Ŵ according to z. Here, we let z have a

much lower dimension than both s and Ŵ due to the following reasons: 1) considering

the frequent memory accesses in DNNs which result in lengthy s (i.e., containing millions

of ciphertext collision records), a lower-dimensional z can force E to neglect irrelevant

records in s and to focus on functionality-related information (guided by proper training

objectives, as will be introduced later). Besides, 2) the dimension expansion process in D

(i.e., from z to Ŵ) encourages D to infer the unleaked information (as ciphertext side chan-

nels only leak partial weight information), instead of merely transmitting information in
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s. For efficiency, we implement E and D as multilayer perceptrons (MLPs); empowered by

our training algorithms, such simple forms of E and D work sufficiently well in practice.

Training “Data” Construction ( {k2 , {k5 ). Unlike conventional DNN training data that is

formed as a set of input-output pairs, HYPERTHEFT’s “training data” is a set F of different

binary classification or regression tasks. This setup helps the weight generation generalize

from known (training) tasks to unknown (test) tasks. We first collect some data that have

the same input type (e.g., merely natural images) with the victim DNN. Note that their

task domain does not overlap with the victim DNN’s task domain. As in Fig. 5.4(b), if the

victim DNN performs a classification task and suppose the attacker’s data have total m

classes, we form C(2, m) 7 (i.e., the number of 2-combinations for a set of m elements) sub-

datasets with each for a binary classification task. For victim DNNs performing regression

tasks, attackers can randomly divide their data into sub-datasets for different regression

tasks.

All sub-datasets also have their training and test sets. We denote them as sub-training

and sub-test sets. To prepare “victim” DNNs for the offline training, we also train a DNN

F̂W⇤ (whose weight is W⇤ and the structure is the same as our surrogate model) for each

task f⇤ 2 F using its corresponding sub-training set. We ensure each F̂W⇤ is well-trained

to a satisfactory accuracy or loss.

Per-Task Granularity and Single-Trace Input ( {k2 , {k4 , {k7 ). As shown in Fig. 5.4(b)-(c), in

each training iteration, we randomly pick a task f⇤ and its corresponding trained DNN

F̂W⇤ . We then randomly select one input data x from f⇤’s sub-test set and feed it to F̂W⇤ .

It’s worth noting that using x from the sub-test set does not misuse the dataset because

our “data” are split as training and test tasks; these sub-test sets belong to training tasks.

When F̂W⇤ is executing with x, we collect a ciphertext side channel s⇤ as one training input

of HYPERTHEFT. Then, HYPERTHEFT takes s⇤ and outputs Ŵ . HYPERTHEFT is optimized

to generate Ŵ that is functionality-equivalent to W⇤ (i.e., F̂W⇤ ’s weight).

Note that each input of HYPERTHEFT is a ciphertext side-channel trace logged from

the victim DNN’s only one execution. Recall as explored in Sec. 5.5, a DNN’s one execu-

tion can reflect rich information of its functionality. The single-trace setup can make the

7In practice, using all C(2, m) sub-datasets is usually unnecessary. Our results in Sec. 5.8 show that 25-30
sub-datasets are sufficient.
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online attack stealthy and minimize the online attack’s cost. Sec. 5.6.3 will introduce our

optimizations for this single-trace setup.

Functionality-Centric Training Objective ( {k1 , {k2 , {k3 , {k6 ). Our training objective aims to

measure the equivalence between the generated weight Ŵ and the target weight W⇤. As

elaborated in Sec. 5.5, element-wise distance metrics are inapplicable to DNN weights: a

weight having similar elements with W⇤ may exhibit a distinct functionality and is even

non-functional. Given that W⇤’s functionality was formed when training W⇤ on f⇤’s sub-

training set, we can also enable an equivalent functionality for Ŵ using this sub-training

set. Nevertheless, we should not directly train Ŵ on the sub-training set, because the

victim DNN’s training data (or data from the same task domain) is unavailable during

online attack.

Intuitively, since the generated weight Ŵ = D � E(s⇤) is decided by E and D8 which

are MLPs, updating E and D’s weights can also change Ŵ . Thus, to make Ŵ functionality-

equivalent to W⇤, we can indirectly optimize Ŵ by only training E and D with f⇤’s sub-

training set. To this end, we design the following training objective:

arg min
D,E

L(F̂
Ŵ

, f⇤), where Ŵ = D � E(s⇤). (5.2)

L denotes the loss function associated with f⇤. For example, L is cross-entropy loss for

classification and mean squared error for regression. L(F̂
Ŵ

, f⇤) denotes the loss calcu-

lated over f⇤’s sub-training set when F̂ has the weight Ŵ (i.e., the output of D � E).

As illustrated in Fig. 5.4(c), similar to conventional DNN training, this objective min-

imizes the loss L by back-propagating through F̂
Ŵ
! D ! E. However, it does not di-

rectly train F̂
Ŵ

, but only trains E and D to optimize their output Ŵ . As a result, Ŵ gener-

ated from the subsequent iterations (after training E and D) can reduce the loss L(F̂
Ŵ

, f⇤).

Finally, the generated Ŵ will have an equivalent functionality with W⇤ when it reduces

L(F̂
Ŵ

, f⇤) to a satisfactory level.

This training scheme is fundamentally different from conventional DNN training. Since

the training optimizes HYPERTHEFT’s generation ability across different tasks, it makes

the weight generation task-wise generalizable: given s⇤ logged from DNNs solving dif-

8We should not modify the logged ciphertext side channel s⇤.
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ferent unseen tasks, D � E(s⇤) generates weights that are capable of solving the corre-

sponding tasks. Importantly, we find that HYPERTHEFT can generate functional weights

for DNNs that are much larger than HYPERTHEFT. That is, we do not need to build a

huge HYPERTHEFT whose weight subsumes all functionality-equivalent weights of the

victim DNN. Essentially, the objective in Eq. 5.2, together with the dimension expansion

of D, enable HYPERTHEFT to infer unleaked information in s⇤ through the functionality

perspective. Moreover, representing functionality should require less information than

representing the weight itself; this is also supported by existing DNN weight pruning

works [78, 288, 175].

5.6.3 Optimizations for HYPERTHEFT

Orchestrating Training Iterations ( {k2 , {k4 ). When HYPERTHEFT is taking a ciphertext side

channel trace s⇤ in each training iteration, it is impractical to train HYPERTHEFT using f⇤’s

whole sub-training set, as it incurs a cost comparable to training total #training iterations

DNNs; without sufficient training iterations, the encoder E may be unable to extract useful

information from s⇤.

Worse, our tentative experiments show that HYPERTHEFT rarely converges under the

above setup, because it poses conflicts between different training iterations. Suppose after

one iteration, HYPERTHEFT is able to generate (nearly) functional weights for the task f⇤.

The subsequent iteration, however, requires HYPERTHEFT to generate functional weights

for another different task. Since universal weights (that can solve all tasks) do not ex-

ist [219], fulfilling the subsequent iteration’s requirement may break HYPERTHEFT’s gen-

eration ability formed in the current iteration.

To reduce the overhead and alleviate conflicts between different iterations, we adopt a

sampling strategy. Instead of using f⇤’s whole sub-training set, we randomly sample one

data instance from the sub-training set to optimize Eq. 5.2. Different from using the whole

sub-training set that independently and subsequently trains HYPERTHEFT for each task, this

sampling strategy jointly trains HYPERTHEFT for all tasks over multiple iterations. It, to

some extent, explores the similarity between tasks and helps HYPERTHEFT to form the

task-wise generalization. In addition, the sampling only reduces the cost of each training

iteration; we still have sufficient iterations (that use different s⇤ as E’s inputs) to train E.
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Decoupling Functionality ( {k4 , {k5 , {k7 ). As discussed in Sec. 5.4, TEE-shielded DNNs only

return the final prediction, and we do not assume knowing how many (i.e., reflected from

DNN structure) or which (i.e., the task domain) classes the victim DNN can predict. Our

current attack pipeline is adequate for binary classification and regression tasks. Below,

we discuss how it can be applied to k-class classification (k > 2).

As explored in Sec. 5.5, the full functionality of k-class classification can be decou-

pled as k (sub-)functionalities of binary classification. Thus, attackers can steal the full

functionality via k surrogate models. However, the binary classification decoupled from

k-class classification (i.e., whether an input is from a class or not) is slightly different from

our training binary classification (i.e., classifies two different classes). To address this, we

actively flip the two labels of each sub-training set when training HYPERTHEFT.

As illustrated in Fig. 5.4(b)-(c), the sub-dataset has two classes P1 and P2. If the cipher-

text side channel s⇤ is collected when F̂W⇤ is taking an input x from class P2, we set P2 in

the sub-training set as the label “yes” whereas P1 as the label “no”, and vice versa if x

is from class P1. This way, every time a TEE-shielded DNN executes with an input x of

class Px, HYPERTHEFT can generate a surrogate model which is able to predict whether an

input belongs to Px or not. By collecting ciphertext side channels from the victim DNN’s

(minimal) k executions, HYPERTHEFT can generate k surrogate models where the i-th sur-

rogate model predicts an input’s confidence of belonging to the i-th class, thereby stealing

the full functionality. Since HYPERTHEFT’s weight generation generalizes across tasks, we

only need to train HYPERTHEFT once.

Stochastic and Layer-Wise Generation ( {k4 , {k6 , {k7 ). Inspired by DNN’s stochastic training

algorithms (e.g., SGD [17], Adam [129]), we also implement a stochastic weight genera-

tion by adding a random noise e to z⇤, as illustrated in Fig. 5.4(d). This way, HYPERTHEFT

can more extensively utilize one logged side channel to generate different but equivalent

weights in different runs. The resulting surrogate models (for the same binary classifica-

tion or regression task) can form a majority voting (i.e., using the most frequent prediction

from these surrogate models as the final prediction) to improve the accuracy [80].

In addition, following advice from [209, 287], HYPERTHEFT uses one encoder E, but

n independent decoders D1, . . . , Dn to generate weights Ŵ = {ŵ1, . . . , ŵn} for layers

f̂1, . . . , f̂n, respectively. As shown in Fig. 5.4(d), each Di takes an identical input z⇤ + e
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(i.e., the e is fixed after sampled). Beyond our functionality-centric objective that implic-

itly captures correlations between weight elements, this layer-wise generation can explic-

itly model the layer propagation in DNNs, while considering the independent execution

of each layer.

5.7 Implementation and Setup

We implement HYPERTHEFT in PyTorch (ver. 2.0.0) with about 2.5K LOC. Both the en-

coder E and decoder D in HYPERTHEFT are implemented as three-layer MLPs with ReLU

as the activation function. The latent variable z is set to have 64 dimensions. When gen-

erating a DNN weight having v elements, the output of D is a v-dimensional vector; this

vector is then reshaped according to the structure of the surrogate model. HYPERTHEFT

is trained using Adam optimizer with a learning rate of 0.002 and the training takes 30

epochs. Each epoch takes 15 minutes on one Nvidia GeForce RTX 2080 GPU. Note that

training HYPERTHEFT is a one-time effort given its task-wise generalizable weight gener-

ation.

Side Channel Preparation. Since a TEE-shielded DNN isolatedly operates in its memory,

and given the high privilege of attackers (e.g., hypervisor, OS), ciphertext side channel

distinguishes other conventional side channels by its clean and noise-free nature [149,

146]. Also, unlike prior DNN attacks, HYPERTHEFT does not need to interact with or log

ciphertext side channels from the victim DNN in the offline stage. Hence, we can speed

up the offline data preparation by mimicking an exploitation tool using Intel Pin [170] on

attacker’s own DNNs. During the online stage, we use these exploitation tools to collect

ciphertext side channels from (unknown) TEE-shielded DNNs and steal their weights. To

date, two mature exploitation tools, CipherLeak [149] and SEV-Step [146, 258] have

been proposed. CipherLeak is coarse-grained but is more scalable by operating in a

page granularity, while SEV-Step can precisely track memory write in an instruction

granularity but is costly.

We configure CipherLeak following the default setup. However, when setting up

SEV-Step, we note that its current implementation is based on Linux kernel Ver. 5.14,

which is too old to be compatible with the latest SEV-SNP firmware (Ver. 1.55) required
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to launch a guest VM for DNNs. We have contacted the developers for support, and

the upgrading is still in process by the time of submission given the considerable man-

ual efforts required. Hence, we simulate SEV-Step using Intel Pin. Our preliminary

explorations show that ciphertext side channels collected using our Pin-based simula-

tion and SEV-Step are identical (on those programs supported by both). As suggested

by the developers, a potential (and might be the only) factor that could differ our Pin-

based simulation from SEV-Step is due to the multiple memory writes occurred during

a given APIC timer interval, where some memory writes can be periodically missed by

SEV-Step [258]. Thus, for completeness, we also benchmark HYPERTHEFT towards this

impact in Sec. 5.12.1. Overall, HYPERTHEFT constantly achieves promising performance

even when considerable (e.g., 63/64) memory writes are missed.

Considering the stealthy and efficiency, we employ CipherLeak to exploit large DNNs

(e.g., ViT [72]). Note that it is often impractical to put these extremely large DNNs into

TEEs. Existing works divide large DNNs into slices and only shield sensitive slices via

TEEs [179, 108, 285], leaving other slices as public. Therefore, we adopt HYPERTHEFT to

recover weights of the TEE-shielded DNN slices. For moderate-size DNNs (e.g., ResNet,

LSTM) that can be fully shielded by TEEs, we use SEV-Step (simulated via Pin due to the

compatibility issue) to collect ciphertext side channels and recover the full DNN weights.

Side Channel Representation. We first record ciphertext collisions for different addresses

in the victim DNN’s (isolated) memory region. If two consecutive writes to the same ad-

dress have the same content, we record a bit 1 for this address; otherwise, we record a bit

0. This way, we collect a binary collision sequence for each address. Given that DNN in-

termediate outputs are floating-point numbers, most addresses do not have collisions and

can be neglected to reduce the number of target addresses. Then, we rank the remaining

collision sequences based on the order of their first writes, and concatenate them as one

single sequence. This concatenated sequence denotes one ciphertext side-channel trace.

Multi-Threading. While the matrix computations in DNNs are implemented as multi-

threading, we do not observe non-deterministic ciphertext collisions because the memory

management in modern DNN runtime is clean: each thread primarily performs compu-

tations of a specific region in the matrix, and its memory accesses are restricted to the

assigned small memory region.
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5.8 Evaluation

In this section, we first introduce the evaluation setup in Sec. 5.8.1. We then evaluate HY-

PERTHEFT under the weakest knowledge in Sec. 5.8.2, where victim DNNs are running

with the latest version of PyTorch (ver. 2.1.0). Sec. 5.8.3 evaluates the attack surface by

considering DNN executables and different versions of PyTorch, and studies how stronger

knowledge (under certain possible scenarios) can enhance the weakest-knowledge at-

tacks.

Sec. 5.9 further shows that attacks mitigated by TEEs can be largely enhanced by our

recovered weights. In Sec. 5.12.3, we present DNN modules that induce the leakage. Over-

all, the leakages are due to basic computation operators shared by different DNNs.

5.8.1 Evaluation Setup

Table 5.2: Evaluated datasets and victim DNNs. ImageNet is evaluated under a cross-
dataset setting. For ViT, we recover the weights of the multi-head self-attention layers.

Dataset Input Type Task Type Remarks DNNs MSE/Acc.
Stock [120] Stock price Reg. Sequence LSTM 1.46⇠1.95

Chest
X-ray [246]

Medical
image Classif. 2-class LeNet 90⇠95%

ResNet 90⇠95%

MNIST [68] Digit Classif. 2-class
LeNet 94⇠98%
ResNet 94⇠98%

ViT 94⇠98%

CIFAR10 [134] Natural
image Classif. 2-class

LeNet 90⇠95%
ResNet 90⇠95%

ViT 90⇠95%

ImageNet [67] Natural
image Classif. Multi-class & 7 DNNs* 90⇠95%Cross-dataset

* LeNet, ResNet, VGG, SqueezeNet, MobileNet, DenseNet, and ViT.

DNNs. Table 5.2 shows our evaluated DNNs, which are popular and representative. In

particular, LeNet has a sequential structure whereas ResNet has a non-sequential struc-

ture. They are widely employed as (part of) modern DNNs backbone. LSTM has a recur-

rent structure, which usually processes discrete data sequences. The ViT and the multi-

head self-attention mechanism are the building blocks of recent large language models

(LLMs).
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TEE Usage. For classical moderate-size DNNs (DNNs in Table 5.2 except for ViT), we put

the full DNNs into TEE and generate their full weights using HYPERTHEFT. However,

given the large size of Vision Transformer (ViT) [72], it is impractical to shield the full DNN

via TEEs. Following recent works [179, 108, 285], we consider shielding only sensitive

slices of ViT and using HYPERTHEFT to recover weights of the shielded DNN slices. Since

ViT’s effectiveness is due to the self-attention, we shield ViT’s multi-head self-attention

layers via TEEs and use HYPERTHEFT to generate the corresponding weights.

“Data” (i.e., Task) Construction. Table 5.2 lists our adopted datasets. Stock dataset is

used to predict the stock price for different companies which is a regression task. We

divide Stock dataset according to the company to form different regression tasks. We

use MNIST, CIFAR10, and Chest X-ray to evaluate HYPERTHEFT for binary classification

w.r.t. different input types. For each dataset, we randomly choose two classes to form

a binary classification as our test “data”. The remaining classes are used to construct

C(2, 8) = 28 binary classifications as tasks in our training “data”, so that task domains of

HYPERTHEFT’s training and test data/tasks do not overlap.

ImageNet is used to evaluate HYPERTHEFT for multi-class classification. Since both

CIFAR10 and ImageNet are natural images, we consider a cross-dataset setting to eliminate

potential bias within the same dataset: we train HYPERTHEFT using binary classifications

constructed via CIFAR10 but evaluate it with k-class classification formed via ImageNet.

We set k 2 {2, 10}. Overlapped classes between ImageNet and CIFAR10 are excluded.

For cross-validation, we consider five different combinations of training and test “data”

splits in each setting, resulting in (5⇥ #datasets⇥ #DNNs) distinct test tasks with each one

corresponds to one unique victim DNN. For each test task, we generate 100 weights from

the victim DNN’s 100 different executions.

Surrogate Model Structure. For image DNNs, we follow the common practice and de-

sign the surrogate model as convolutional layers followed by fully-connected layers; the

activation function is ReLU. We implement two surrogate models of different depths. The

first one, dubbed as Conv, has 3 convolution + 2 fully-connected layers. The second one,

dubbed as Convdeep, has 5 convolutional + 3 fully-connected layers. For our regression

task, since inputs are discrete sequences, our surrogate model is a basic recurrent neural

network (RNN) following the common practice. We clarify that our surrogate model is
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much simpler than the victim DNNs.

Note that ViT (and all transformer-based DNNs) is implemented using only fully-

connected (FC) layers. Also, in the slice-based protection, the structure of each TEE-

shielded slice can be easily inferred from public DNN slices. Therefore, our surrogate

model has the same structure as the ViT’s self-attention layer. However, given the dense

computations of FCs, training ViT requires careful regulations like dropout to avoid over-

fitting [72], which can be private in practice. Thus, for the weakest-knowledge setting

in Sec. 5.8.2, we assume attackers do not know the regulation. Sec. 5.8.3 then evaluates

impacts of the regulation information.

Evaluation Criteria. Following existing works [116, 285], we use two criteria, fidelity and

functionality, to evaluate DNN weights recovered by HYPERTHEFT. Fidelity (Fid) cal-

culates the percentage of test inputs (from the sub-test set of each test task) where the

surrogate model and the victim DNN have identical predictions (including incorrect pre-

diction). For classification, Fid can be directly calculated via predicted labels, whereas for

regression, because the prediction is continuous numbers, we deem two predictions as

identical if their difference is less than 2 (the stock prices vary with a range around 100).

Functionality (Fun) denotes the task’s own evaluation metric. Fun is the MSE or accu-

racy of all test inputs for regression or classification tasks, respectively. Higher accuracy

indicates better results whereas lower MSE is better.

5.8.2 The Weakest-Knowledge Attack

In this section, we generate 100 ⇥ 5 different weights for each victim DNN, leading to

more than 8K weights and evaluation results (for 17 different victim DNNs). To better

reflect the average and fluctuations, we report the ranges of these results in Table 5.3.

Regression & Binary Classification. As shown in Table 5.3, HYPERTHEFT can successfully

recover DNN weights for both regression and binary classification using a single side-

channel trace logged during the victim DNN’s one execution. The recovered weights

are functional (Fun) and also consistent (Fid) with the victim DNN’s weights. We note

that Fid is higher than Fun on average, because Fid also counts incorrect predictions. It

also reflects that HYPERTHEFT infers specific behaviors of the victim DNN beyond its
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Table 5.3: Results of the weakest-knowledge attack.

1 Dataset DNN Surrogate #Classes #Votes Fid Fun

2 Stock LSTM RNN N/A 1 90⇠93% 1.49⇠1.97
3 Chest LeNet Conv 2 1 87⇠91% 83⇠88%
4 X-ray ResNet Conv 2 1 88⇠90% 86⇠89%
5

MNIST
LeNet Conv 2 1 87⇠91% 87⇠89%

6 ResNet Conv 2 1 86⇠92% 84⇠91%
7 ViT ViT 2 1 91⇠98% 91⇠97%
8

CIFAR10
LeNet Conv 2 1 79⇠86% 77⇠83%

9 ResNet Conv 2 1 78⇠86% 78⇠82%
10 ViT ViT 2 1 80⇠87% 79⇠88%
11

ImageNet

LeNet Conv 2 1 78⇠87% 79⇠85%
12 ResNet Conv 2 1 78⇠88% 77⇠86%
13 ViT ViT 2 1 80⇠87% 78⇠87%
14 ResNet Conv 10 1 70⇠75% 68⇠73%
15 ResNet Convdeep 10 1 79⇠84% 76⇠83%
16 ViT ViT 10 1 77⇠86% 78⇠85%
17 ResNet Conv 10 5 85⇠88% 85⇠87%
18 ResNet Conv 10 11 89⇠92% 88⇠89%
19 ResNet Conv 10 21 93⇠95% 91⇠94%
20 VGG Conv 10 11 91⇠94% 90⇠92%
21 SqueezeNet Conv 10 11 90⇠92% 89⇠92%
22 MobileNet Conv 10 11 90⇠93% 88⇠90%
23 DenseNet Conv 10 11 92⇠93% 90⇠93%
24 ViT ViT 10 11 91⇠94% 90⇠94%

overall functionality, despite that HYPERTHEFT never queries the victim DNN. Recall that

ciphertext collisions are generated due to the victim DNN’s intermediate outputs. As

explored in Sec. 5.5, these intermediate outputs specify both a DNN’s functionality (i.e.,

how the input space is split) and its specific behaviors (i.e., where and how the splitting

lines are drawn), rendering the superiority of HYPERTHEFT’s weight generation scheme.

Multi-Class Classification. As shown in the 14-24 rows in Table 5.3, HYPERTHEFT is ca-

pable of (passively) generating weights for classification of more classes. Although classi-

fying multiple classes is more challenging, HYPERTHEFT alleviates this hurdle by cleverly

decoupling the k-class classification as k binary classifications. Nevertheless, we note that

Conv (the 14th row) exhibits a relatively lower capability of classifying 10 classes due to

its insufficient depth. Nevertheless, when using Convdeep (the 15th row) as the surrogate

model’s structure, the Fun and Fid are largely improved.

Majority Voting. Table 5.3’s 17-24 rows show that majority voting among multiple surro-

gate models (for the same task) can further improve Fid and Fun. As observed, while a

single surrogate model based on Conv performs worse when classifying 10 classes, the re-
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sults can be improved as being comparable to Convdeep with multiple Conv-based surro-

gate models. Note that we introduce stochasticity into the weight generation for majority

voting, these different DNN weights are therefore generated using a single side channel

trace from the victim DNN’s one execution.

Surrogate Model. The above results show that the depth (i.e., the number of layers) of the

surrogate model’s structure primarily affects HYPERTHEFT’s functionality stealing. With-

out sufficient layers in the surrogate model (i.e., the non-linearity is limited), the generated

weights may not be able to capture the functionality of more complex tasks. However, this

should not be a major concern, as the insufficient depth problem can be alleviated by ma-

jority voting of multiple surrogate models, which is performed fully offline and does not

bring extra cost to the victim DNN. In practice, users can set a moderate level of depth for

the surrogate model (e.g., ⇠10). If the recovered DNN weights do not have satisfactory

results, users can generate multiple weights (i.e., run HYPERTHEFT multiple times with

the same side channel trace) and conduct majority voting.

5.8.3 Attack Surface in Different Cases

Table 5.4: Results of Glow and various PyTorch versions. We evaluate binary classification
w/o using majority voting.

Dataset DNN Surrogate Runtime Fid Fun

MNIST

LeNet

Conv

Glow 88⇠93% 88⇠92%
ResNet Glow 90⇠94% 88⇠94%
LeNet V1.13 86⇠91% 87⇠89%
ResNet V1.13 89⇠90% 85⇠91%
LeNet V1.10 88⇠92% 87⇠91%
ResNet V1.10 89⇠93% 86⇠90%
LeNet V1.7 90⇠92% 86⇠92%
ResNet V1.7 87⇠94% 88⇠91%

CIFAR10

LeNet

Conv

Glow 79⇠80% 77⇠81%
ResNet Glow 78⇠81% 78⇠79%
LeNet V1.13 78⇠83% 76⇠81%
ResNet V1.13 79⇠85% 75⇠83%
LeNet V1.10 80⇠81% 76⇠80%
ResNet V1.10 77⇠85% 77⇠82%
LeNet V1.7 79⇠84% 78⇠81%
ResNet V1.7 78⇠86% 78⇠83%

Different Runtimes. To disclose the widespread leakage, we evaluate different versions
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of PyTorch. We also consider Glow, a popular deep learning compiler that compiles DNNs

into executables. Since Glow does not evolve too much, we only evaluate its latest version.

Overall, the same DNN’s internal computations are implemented distinctly in PyTorch

and Glow-executables.

As in Table 5.4, for both Glow-executables and different versions of PyTorch, HYPER-

THEFT can constantly recover the victim DNN’s weights, indicating HYPERTHEFT’s su-

periority and the wide existence of ciphertext side-channel leakage in different runtimes.

That is, the leakage is presumably due to issues in DNN’s own design (see detailed dis-

cussion in Sec. 5.10), rather than implementation defects in a specific runtime or version.

Table 5.5: Generating weights using ciphertext side channel traces logged from the victim
DNN’s multiple executions.

Dataset DNN Surrogate #Classes #Votes #Traces Fid Fun

ImageNet
ResNet50 Conv 10 1 5 87⇠89% 86⇠89%
ResNet50 Conv 10 1 11 86⇠91% 86⇠90%
ResNet50 Conv 10 1 21 90⇠94% 92⇠94%

Multiple Executions. To evaluate how multiple side-channel traces (derived from different

executions of the victim DNN) can improve HYPERTHEFT’s recovered weights, we let HY-

PERTHEFT generate one weight for each trace and conduct majority voting among these

weights. Results are in Table 5.5. Compared with the 17-19th rows in Table 5.3, the im-

provements brought by majority voting among weights generated via, 1) multiple traces

vs. 2) HYPERTHEFT’s multiple runs using one trace, are comparable, indicating the merit

of HYPERTHEFT’s stochastic generation.

Knowledge of DNN Structure. We evaluate how structure information boosts the attack

by using the victim DNN’s structure for the surrogate model. By cross-comparing Ta-

ble 5.6 with the 2nd-15th rows in Table 5.3, we see that the results w/ and w/o struc-

ture information are comparable for binary classification and regression. However, when

knowing the structure information, the result of 10-class classification is better than using

Conv as the surrogate model, but is comparable to the Convdeep case in Table 5.3. This

observation is consistent with our conclusion derived from Table 5.3: the structure in-

formation primarily helps attackers to determine an appropriate depth for the surrogate

model. However, this can be complemented by majority voting among multiple surrogate

models (generated using single trace or multiple traces). For ViT cases, while the regula-
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tion mechanism is critical when training a ViT from scratch, it does not notably affect

HYPERTHEFT’s performance. We infer that those public DNN slices’ weights, which were

jointly trained with private slices’ weights under the same regulation, help HYPERTHEFT

to encode the regulation into its generated weight.

Although structures may differ in terms of connectivity or hyperparameters, as shown

in Sec. 5.12.3, their implementations share the same vulnerable computing operations.

E.g., the cascade_sum function (which performs pairwise sum) is frequently called by

different layers. This further highlights the severity of weight leakage in TEE-shield

DNNs. Previous works often require the exact structure information to boost query-based

model inference [205], whereas HYPERTHEFT can enhance query-based attacks without

such information, as evaluated below.

Table 5.6: Attack using the victim DNN’s structure.

Dataset DNN Surrogate #Classes Fid Fun

Stock LSTM LSTM N/A 91⇠93% 1.44⇠1.96
Chest LeNet LeNet 2 85⇠91% 85⇠89%
X-ray ResNet ResNet 2 87⇠89% 86⇠89%

MNIST
LeNet LeNet 2 86⇠94% 85⇠94%
ResNet ResNet 2 90⇠94% 90⇠93%

ViT ViT 2 91⇠98% 91⇠97%

CIFAR10
LeNet LeNet 2 78⇠85% 77⇠83%
ResNet ResNet 2 79⇠85% 77⇠85%

ViT ViT 2 80⇠88% 79⇠87%

ImageNet

LeNet LeNet 2 79⇠87% 79⇠86%
ResNet ResNet 2 78⇠85% 78⇠83%

ViT ViT 2 78⇠86% 78⇠85%
ResNet ResNet 10 79⇠83% 77⇠83%

Task Domain & Query. As generally assumed by prior query-based attack [205, 116, 47],

even if the victim DNN’s training data are private, it is possible to have some other data

that cover the victim DNN’s task domain. For instance, attackers have some public cat and

dog images when attacking a DNN classifying cat vs. dog. Therefore, we also evaluate

how HYPERTHEFT can be further enhanced in this scenario.

To ease the comparison with previous works, we follow their settings where attackers

query the victim DNN using in-task-domain data, but only use the predictions (without

confidence scores) as labels to train a student model. Differently, we do not train the stu-

dent model from scratch — the student model is trained based on HYPERTHEFT’s gener-
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Table 5.7: Attack with victim DNN’s in-task-domain data.

Dataset DNN #Classes Fun Budget

CIFAR10

LeNet (%) 2 77⇠83%* � 70%
LeNet (%) 2 90⇠95% � 80%
LeNet (!) 2 90⇠95% ⇠15%
ResNet (%) 2 78⇠82%* � 70%
ResNet (%) 2 90⇠95% � 80%
ResNet (!) 2 90⇠95% ⇠15%

ImageNet
ResNet (%) 10 68⇠73%* � 70%
ResNet (%) 10 90⇠95% � 80%
ResNet (!) 10 90⇠95% ⇠15%

* Fun achieved by HYPERTHEFT under the weakest at-
tack; see Table 5.3.
%: training the student model (i.e., Conv) from scratch.
!: initializing the student model (i.e., Conv) with our
generated weights.

ated weights (the generation does not use in-task-domain data). Since prior query-based

attacks primarily focus on classification, we evaluate classification tasks.

Results are given in Table 5.7. Aligned to existing works, we report the query budget as

its relative percentage to the number of victim DNN’s training data. By cross-comparing

Table 5.3 with the 8th, 9th, and 14th rows in Table 5.7, we see that, in order to achieve

comparable results with HYPERTHEFT’s weakest-knowledge attack, query-based attacks

require at least 70% query budget. In contrast, while HYPERTHEFT’s generated weights

from the weakest-knowledge attack are not as good as the victim DNN, they can reach

the same Fun as the victim DNN with only ⇠15% query budget, significantly reducing

the cost. In that sense, HYPERTHEFT enables query-based attacks for TEE-shielded DNNs

since TEE’s mitigation aims to largely increase the query budget (see Sec. 5.2.2).

5.9 Enabled Attacks of HYPERTHEFT

Recall that as introduced in Sec. 5.4, attackers can also leverage the recovered weights

to enable white-box attacks towards the victim DNN. This section accordingly evaluates

how HYPERTHEFT can enable two popular attacks, membership inference attack (MIA)

and bif-flip attack (BFA).

127



Table 5.8: Attack success rate (ASR) of membership inference attacks enabled by HYPER-
THEFT. Upper bound (UB) denotes ASR on the white-box victim DNN. Baseline is 50%.

Dataset DNN Surrogate ASR UB

MNIST LeNet Conv 65.7% 80.1%
ResNet Conv 65.9% 80.8%

Chest LeNet Conv 60.8% 72.7%
X-ray ResNet Conv 60.2% 71.6%

CIFAR10 LeNet Conv 57.7% 66.5%
ResNet Conv 57.0% 67.3%

ImageNet LeNet Conv 57.8% 67.3%
ResNet Conv 59.7% 66.6%

5.9.1 Membership Inference Attack

This section evaluates how HYPERTHEFT’s recovered DNN weights, which give attack-

ers white-box surrogate models, can enable/enhance MIA towards the (black-box) victim

DNN.

Setup. Following the setup in previous works [285], we construct a test suite where 50%

of its data are the victim DNN’s training data (i.e., only data from the corresponding sub-

training split) and the remaining 50% are non-training data. Therefore, the baseline attack

success rate (ASR) is 50% [285]. Note that training and non-training data in the test suite

have the same class, such that MIA will not downgrade to class-wise classification. We

adopt MLDoctor [166] to conduct MIA. Each time we feed an input from the test suite

into HYPERTHEFT’s generated surrogate model, and record outputs from all layers of the

surrogate model. These outputs are then concatenated and fed into MLDoctor to predict

the membership. In this setting, the surrogate model is generated under the weakest-

knowledge attack in Sec. 5.8.2.

Results & Analysis. Table 5.8 lists the MIA results. Interestingly, despite that the surro-

gate model is never trained with victim DNN’s training data, it still significantly improves

the ASR (from 50%) to ⇠65% for MNIST and ⇠57% for CIFAR10 and ImageNet. As a ref-

erence, the ASR of directly applying MLDoctor on the white-box victim DNN (i.e., upper

bound ASR) is 80% for MNIST and 67% for CIFAR10 and ImageNet. Recall that as eval-

uated in Sec. 5.8.2, besides stealing the overall functionality from the victim DNN, HY-

PERTHEFT also infers some of its specific behaviors (e.g., predictions for specific inputs),

which explains why HYPERTHEFT’s generated surrogate model is useful for MIA towards
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the victim DNN.

Table 5.9: Results of bit-flip attack (BFA) enabled by HYPERTHEFT. BFA requires knowing
the victim DNN’s structure.

Dataset DNN Surrogate Precision Recall

MNIST LeNet LeNet 12.0% 93.1%
ResNet ResNet 13.7% 94.0%

Chest LeNet LeNet 33.2% 95.7%
X-ray ResNet ResNet 34.4% 96.3%

CIFAR10 LeNet LeNet 63.7% 99.4%
ResNet ResNet 55.6% 99.1%

ImageNet LeNet LeNet 57.2% 98.8%
ResNet ResNet 59.3% 99.2%

5.9.2 Bit-Flip Attack

We also evaluate how HYPERTHEFT’s recovered DNN weights can enable BFA. As in-

troduced in Sec. 5.2.2, to conduct BFA, the main prerequisite is localizing elements in

a DNN’s weight that are critical to the intelligence (which is infeasible in TEE-shielded

DNNs), such that bits can be flipped efficiently. Note that BFA requires knowing the

victim DNN’s structure and launching rowhammer in TEEs may have additional chal-

lenges [46, 43]. However, they are out of the scope of this chapter; we primarily focus on

weight-related requirements that are enabled by HYPERTHEFT.

Setup. To assess how HYPERTHEFT boosts BFA, we generate the surrogate model under

the weakest-knowledge + structure setting. We follow the localization strategy in Deep-

Hammer [268], the state of the art in this field, to localize critical weight elements9 in

the surrogate model and measure their overlapping (in terms of locations in the DNN’s

structure) with critical weight elements in the victim DNN. Two metrics, precision and

recall, are adopted in this evaluation. Precision quantifies the percentage of victim DNN’s

critical elements that are localized in the surrogate model. Recall, in contrast, measures

how many weight elements localized in the surrogate model are also critical in the victim

DNN.

Results & Analysis. Table 5.9 reports the results. The recall values are promising: weight

9Most existing BFA works focus on quantized DNNs and identify weight bits [206, 268]. Since our evalu-
ated DNNs are general floating-point DNNs, our evaluations mainly focus on the weight element level.
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elements identified in the surrogate model are highly likely to be critical in the victim

DNN. While the precision is relatively lower (i.e., not all critical weight elements in the

victim DNN can be identified via the surrogate model), it should not be a concern. In

fact, launching BFA does not require identifying all the critical weight elements [206, 268];

usually ⇠10 flips can completely deplete a DNN’s intelligence. The identification step

primarily helps attackers to filter out non-critical bits since flipping bits via rowhammer

is costly [126, 206, 268]. With this regard, recall should be a more important metric than

precision. Thus, we can conclude that our current results are sufficient to deliver the

prerequisite of BFA against TEE-shielded DNNs.

5.10 Discussion and Mitigation

Non-Linearity Enlarges Leakage. For cryptographic software studied in prior works, ci-

phertext collisions can easily occur since private keys only have bits 0/1. However, gen-

eral DNNs evaluated in this chapter have floating-point intermediate outputs: since the

probability of sampling two identical floating-point values is negligible, ciphertext colli-

sions should rarely occur.

With manual inspection, we find that DNN’s non-linearity is the primary root cause.

Recall that DNNs are non-linear functions and non-linearity is the basis of DNN’s intel-

ligence. Given continuous values within a certain range, non-linear functions often map

them into smaller ranges. For instance, the Softmax function in DNNs maps [�•, +•]

into [0, 1]. Also, the derivatives of DNN’s non-linear functions (e.g., Sigmoid) usually

approach zero for large or tiny inputs, i.e., the output values change negligibly with such

inputs. Moreover, some non-linear functions only output discrete values for certain in-

puts, e.g., ReLU always outputs 0 if its input is negative. Overall, since floating-point

numbers have limited precision in modern computers (e.g., 32-bit), these non-linear map-

pings greatly increase ciphertext collisions by enlarging the frequency of the same DNN

intermediate outputs.

Hardware and Software Mitigations. Recent TEEs (e.g., Intel TDX [53], ARM CCA [153])

redesign hardware architectures to mitigate ciphertext side channels. For example, Intel

TDX always returns zeros when outer programs read the encrypted memory. However,
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such hardware mitigations require modifying the current hardware design, which is im-

practical for TEEs that have been broadly used (e.g., AMD SEV [122]). Importantly, they

cannot fully eliminate ciphertext side channels because attackers can still access the ci-

phertext via DMA devices [230] or physical attacks such as memory bus snooping [141],

cold boot attack [92], etc.

Li et al. [146] propose to mitigate the leakage via VMSA randomization, so that cipher-

text is no longer deterministic. However, this scheme incurs considerable performance

overheads and is not adopted by vendors. On the other hand, we foresee the high feasi-

bility of implementing software-level randomization to specifically mitigate the leakage in

TEE-shielded DNNs. In fact, DNNs exhibit robustness to random small perturbations [83]

(not carefully crafted adversarial perturbations [42]) on their intermediate outputs. Hence,

every time a DNN is executing, we can add random noise to DNN’s intermediate outputs

before they are written into memory. Since the main purpose is diversifying the written

values and reducing collisions, we can make the noise negligible. To further minimize

the impact on DNN’s accuracy, we expect to accordingly refine conventional training

algorithms to make DNNs robust to such noise. For example, existing robust training

schemes [203] (which improve DNN’s robustness to input perturbations) can be adapted

for noise in DNN’s intermediate outputs.

5.11 Conclusion

This chapter presents HYPERTHEFT to steal DNN weights from ciphertext side channels

of TEE-shielded DNNs. We propose to generate functionality-equivalent weights and

demonstrate its effectiveness and practicality. Weights generated by HYPERTHEFT con-

stantly achieve high accuracy under various DNNs, datasets, scenarios, and platforms,

and can enable severe downstream DNN attacks.
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5.12 Appendix for Chap. 5

5.12.1 Impacts of APIC Timer

As mentioned in Sec. 5.7, multiple memory writes can happen during a given APIC timer

interval [258], which could differ SEV-Step from our Pin-based simulation. To bench-

mark the impact, we only record every step-th memory write and then measure ciphertext

collisions. We consider step = 8, 16, 32, and 64.

Results are reported in Table 5.10 and Table 5.11. We note that when step  32, the Fun

and Fid values (2nd-4th rows in Table 5.10 and Table 5.11) are comparable to our results in

Sec. 5.8.2 and Sec. 5.8.3. Only step = 64 notably degrades the Fun and Fid values; however,

the impacts are not significant. For example, when using Conv as the surrogate model’s

structure, even when step = 64 (i.e., only one memory write is logged among 64 memory

writes), the Fun and Fid values are still around 80%. Moreover, we can further improve

the HYPERTHEFT’s results under this extremely challenging scenario via majority voting;

see the last two rows in Table 5.10 and Table 5.11.

Table 5.10: Benchmarking impacts of APIC timer (Fun).

Sur. step #Votes Fun Sur. step #Votes Fun

Conv

8 1 85⇠89%

LeNet

8 1 84⇠92%
16 1 83⇠86% 16 1 84⇠88%
32 1 84⇠88% 32 1 81⇠89%
64 1 72⇠83% 64 1 74⇠85%
64 5 82⇠87% 64 5 80⇠86%
64 11 86⇠89% 64 11 83⇠90%

Table 5.11: Benchmarking impacts of APIC timer (Fid).

Sur. step #Votes Fid Sur. step #Votes Fid

Conv

8 1 86⇠91%

LeNet

8 1 87⇠92%
16 1 85⇠88% 16 1 86⇠89%
32 1 86⇠88% 32 1 85⇠90%
64 1 73⇠85% 64 1 76⇠86%
64 5 84⇠89% 64 5 83⇠88%
64 11 87⇠92% 64 11 88⇠91%
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5.12.2 Proof for Sec. 5.5

For the case mentioned in Sec. 5.5, where a DNN’s last layer is implemented as y =

Sigmoid(qx + b), suppose the input is x = [x0, x1]| and the output is y = [y0, y1, y2]|.

Given weight W = [q, b]:

q =

2

4
q0,0 q0,1
q1,0 q1,1
q2,0 q2,1

3

5 , b =

2

4
b0
b1
b2

3

5

we have y0 = Sigmoid(h0) and h0 = q0,0x0 + q0,1x1 + b0.

From Weight to Lines. In practice, a binary classification predicts “yes” if Sigmoid(h0) >

0.5, i.e., h0 = q0,0x0 + q0,1x1 + b0 > 0. Thus, in the two-dimensional space constituted by

x0 and x1, the decision boundary is depicted by the line q0,0x0 + q0,1x1 + b0 = 0. The same

applies to y1 and y2, and we can draw the three lines as in Fig. 5.3.

!!

!"

"","	!" + "",!	!! + %" = 0

(⃗ = ("",", "",!)	 [!"∗, 	!!∗ ]⊺	[!"& , 	!!& ]⊺	

/0

1

Figure 5.5: Distance between dot and line.

Distance Between Dot and Line. As illustrated in Fig. 5.5, for an input (i.e., a dot) A :

[x⇤0, x⇤1 ]
|, its distance to the line l : q0,0x0 + q0,1x1 + b0 = 0 equals the length of segment

AC, whose direction is orthogonal to the line l.

To compute the length of AC, we first randomly select one dot from l, as marked by

B : [x00, x01]| in Fig. 5.5. Therefore, the length of AC denotes the vector ~AB’s projection

133



onto the line l’s orthogonal direction, namely ~v = (q0,0, q0,1). Thus, we have

��AC
�� =

���� ~AB ·
~v
|~v|

����

=

������
(x00 � x⇤0, x01 � x⇤1) ·

(q0,0, q0,1)q
q2

0,0, q2
0,1

������

=
1q

q2
0,0, q2

0,1

��(x00 � x⇤0)q0,0 + (x01 � x⇤1)q0,1
�� .

Since B lies in the line l, we have

�b0 = q0,0x00 + q0,1x01.

Therefore, the length of AC can be computed as

��AC
�� =

|q0,0x⇤0 + q0,1x⇤1 + b0|q
q2

0,0, q2
0,1

Intermediate Output and Distance. When the dot A : [x⇤0, x⇤1 ]
| is taken by the layer y =

Sigmoid(qx + b), the intermediate output h = [h0, h1, h2]| = q[x⇤0, x⇤1 ]
| + b is computed as

h =

2

4
q0,0x⇤0 + q0,1x⇤1 + b0
q1,0x⇤0 + q1,1x⇤1 + b1
q2,0x⇤0 + q2,1x⇤1 + b2

3

5 ,

We can see that A’s distance (i.e.,
��AC

��) to the line l (which corresponds to the first row

of [q, b]) is

|h0|q
q2

0,0, q2
0,1

=
|h0|

|[q0,0, q0,1]|

Accordingly, the same rule also holds for the lines corresponding to other rows in [q, b].

5.12.3 Vulnerable Functions in PyTorch

To localize vulnerable modules in DNNs, we use Pin to track functions whose memory

writes trigger weight-dependent ciphertext collisions. In particular, Glow-executables im-

plement each DNN layer as a function and all layers are vulnerable. We notice two types
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of collisions: the first one is caused by identical intermediate DNN outputs (whose pos-

sibilities are enlarged by the non-linearity). The second type is due to collisions between

DNN’s (intermediate) output zeros and the zero-initialized memory (e.g., ReLU can out-

put many zeros). Different from Glow, PyTorch first implements basic computing op-

erations (e.g., multiplication, sum), and uses these operations to further implement DNN

layers. We find that the leakage widely spans these computing operations (e.g., sum, pool-

ing); an example list is given in Table 5.12. Interestingly, while we achieve comparable

attacks over different versions of PyTorch, their vulnerable modules are slightly different.

For instance, when running ResNet in PyTorch 2.1.0 (the latest version), the average pool-

ing operation has leaks. However, such leakage is not identified in older versions when

running the same ResNet.

Table 5.12: Vulnerable Functions in PyTorch.

Version 2.1 Version 1.13 Version 1.10 Version 1.7
cascade_sum cascade_sum cascad_sum sum_kernel
as_strided max_pool max_pool multi_row_sum
sgemm_mscale segmm_pst sgemm_mscale conv2d_forward
conv2d_forward unfolded2d_copy unfolded2d_copy sgemm_copyan
unfolded2d_copy setStrided as_strided unfolded2d_copy
avg_pool2d sgemm_copyan sgemm_copyan max_pool
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CHAPTER 6

QUANTIFYING AND LOCALIZING
SIDE-CHANNEL VULNERABILITIES IN

PRODUCTION SOFTWARE

Chap. 3, Chap. 4, and Chap. 5 primarily focus on the offensive perspective by stealing various

secrets from different side channels. This chapter presents our work on the defensive aspect that

localizes leakage sources of side channels. We first review how to achieve full-fledged localization

and propose eight criteria. Then we show CACHEQL that meets all eight criteria. CACHEQL pre-

cisely quantifies information leaks by characterizing the distinguishability of logged side channel

traces. Moreover, CACHEQL models leakage as a cooperative game, allowing information leak-

age to be precisely distributed to program points vulnerable to cache side channels. CACHEQL

is meticulously optimized to analyze whole side channel traces logged from production software

(where each trace can have millions of records), and it alleviates randomness introduced by defense

modules or real-world noises.

Since existing localization works mostly target cache side channels of cryptographic software.

To present an aligned comparison, we adopt CACHEQL to localize cache side channel leakages in

OpenSSL, MbedTLS, Libgcrypt that were extensively studied previously, and identify a few hun-

dred new leakages. CACHEQL is also employed to analyze data processing libraries like libjpeg,

which is not supported previously. Overall, extending CACHEQL for new side channels and new

leakages is straightforward, as it does not rely on specific side channels or leakage patterns.

6.1 Introduction

Cache side channels enable confidential data leakage through shared data and instruc-

tion caches. Attackers can recover program secrets like secret keys and user inputs by

monitoring how victim software accesses cache units. Exploiting cache side channels has

been shown particularly effective for cryptographic systems such as AES, RSA, and ElGa-
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mal [87, 236]. Recent attacks show that private user data including images and text can be

reconstructed [265, 95, 278].

Both attackers and software developers are in demand to quantify and localize soft-

ware information leakage. It is also vital to precisely distribute information leaks toward

each vulnerable program point, given that exploiting program points that leak more infor-

mation can enhance an attacker’s success rate. Developers should also prioritize fixing the

most vulnerable program points. Additionally, cyber defenders are interested in assessing

subtle information leaks over cryptosystems already hardened by mitigation techniques

(e.g., blinding). Nevertheless, most existing cache side channel detectors focus exclusively

on qualitative analysis, determining whether programs are vulnerable without quantify-

ing information that these flaws may leak [244, 243, 253, 37, 278]. Given the complexity of

real-world cryptosystems and media libraries, scalable, automated, and precise vulnera-

bility localization is lacking. As a result, developers may be likely reluctant (or unaware)

to remedy vulnerabilities discovered by existing detectors. As shown in our evaluation

(Sec. 6.8), attack vectors in production software are underestimated.

This work initializes a comprehensive view on detecting cache side-channel vulner-

abilities. We propose eight criteria to design a full-fledged detector. These criteria are

carefully chosen by considering various important aspects like scalability. Then, we pro-

pose CACHEQL, an automated detector for production software that meets all eight cri-

teria. CACHEQL quantifies information leakage via mutual information (MI) between

secrets and side channels. CACHEQL recasts MI computation as evaluating conditional

probability (CP), characterizing distinguishability of side channel traces induced by differ-

ent secrets. This re-formulation largely enhances computing efficiency and ensures that

CACHEQL’s quantification is more precise than existing works. It also principally allevi-

ates coverage issue of conventional dynamic methods.

We also present a novel vulnerability localization method, by formulating information

leak via a side channel trace as a cooperative game among all records on the trace. Then,

Shapley value [220], a well-established solution in cooperative game theory, helps to lo-

calize program points leaking secrets. We rely on domain observations (e.g., side channel

traces are often sparse) to reduce the computing cost of Shapley value from O(2N) to
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roughly constant with nearly no loss in precision.1 CACHEQL directly analyzes binary

code, and captures both explicit and implicit information flows. CACHEQL analyzes en-

tire execution traces (existing works require traces to be cut to reduce complexity) and

overcomes “non-determinism” introduced by noises or hardening techniques (e.g., cryp-

tographic blinding, ORAM [87]).

We evaluate CACHEQL using production cryptosystems including the latest versions

(by the time of writing) of OpenSSL, Libgcrypt and MbedTLS. We also evaluate Libjpeg

by treating user inputs (images) as privacy. To mimic debugging [244], we collect mem-

ory access traces of target software using Intel Pin as inputs of CACHEQL.2 We also mimic

automated real attacks in userspace-only scenarios, where highly noisy side channel logs

are obtained via Prime+Probe [236] and fed to CACHEQL. CACHEQL analyzed 10,000

traces in 6 minutes and found hundreds of bits of secret leaks per software. These re-

sults confirm CACHEQL’s ability to pinpoint all known vulnerabilities reported by exist-

ing works [243, 253] and quantify those leakages. CACHEQL also discovers hundreds of

unknown vulnerable program points in these cryptosystems, spread across hundreds of

functions never reported by prior works. Developers promptly confirmed representative

findings of CACHEQL. Particularly, despite the adoption of constant-time paradigms to

harden sensitive components, cryptographic software is not fully constant-time, whose

non-trivial secret leaks are found and quantified by CACHEQL. CACHEQL reveals the

pre-process modules, such as key encoding/decoding and BIGNUM initialization, can leak

many secrets and affect all modern cryptosystems evaluated. In summary, we have the

following contributions:

• We propose eight criteria for systematic cache side-channel detectors, considering

various objectives and restrictions. We design CACHEQL, satisfying all of them;

• CACHEQL reformulates mutual information (MI) with conditional probability (CP),

which reduces the computing error and cost efficiently. It then estimates CP using

neural network (NN). Our NN can properly handle lengthy side channel traces and

analyze secrets of various types. Moreover, it does not require manual annotations

of leakage in training data;

1N, the length of a side channel trace, reaches 5M in OpenSSL 3.0 RSA.
2Using Intel Pin to log memory access traces is a common setup in this line of works. CACHEQL, however,
is not specific to Intel Pin [170].
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• CACHEQL further uses Shapley value to localize program points leaking secrets

by simulating leakage as a cooperative game. With domain-specific optimizations,

Shapley value, which is computational infeasible, is calculated with a nearly con-

stant cost;

• CACHEQL identifies subtle leaks (even with RSA blinding enabled), and its correct-

ness has theoretical guarantee and empirical supports. CACHEQL also localizes all

vulnerable program points reported by prior works and hundreds of unknown flaws

in the latest cryptosystems. Our representative findings are confirmed by develop-

ers. It illustrates the general concern that BIGNUM and pre-processing modules are

largely leaking secrets and undermining recent cryptographic libraries.

Research Artifact. To support follow-up research, we release the code, data, and all our
findings at https://github.com/Yuanyuan-Yuan/CacheQL [6].

6.2 Background & Motivating Example

Application Scope. CACHEQL is designed as a bug detector. It shares the same design goal

with previous detectors [244, 73, 243, 253, 255], whose main audiences are developers

who aim to test and “debug” software. CACHEQL is incapable of synthesizing proof-

of-concept (PoC) exploits and is hence incapable of launching real attacks. In general,

exploiting cache side channels in the real world is often a multi-step procedure [162] that

involves pre-knowledge of the target systems and manual efforts. It is challenging, if

not impossible, to fully automate the process. For instance, exploitability may depend

on the specific hardware details [163, 162, 271], and in cloud computing, the success of

co-residency attacks denotes a key pre-condition of launching exploitations [283]. These

aspects are not considered by CACHEQL which performs software analysis.

Threat Model. Aligned with prior works in this field [26, 73, 244, 243, 37], we assume

attackers share the same hardware platforms with victim software. Attackers can observe

cache being accessed when victim software is running. Attackers can log all cache lines

(or other units) visited by the victim software as a side channel trace [162, 271].

Given a program g, we define the attacker’s observation, a side channel trace, as o 2 O

when g is executing k 2 K. O and K are sets of all observations and secrets. K can be cryp-
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tographic keys or user private inputs like photos. We consider a “debug” scenario where

developers measure leakage when g executes k. Aligned with prior works [253, 255], we

assume that developers can obtain noise-free o, e.g., o is execution trace logged by Pin.

We also assume developers are interested in assessing leaks under real attacks. Indeed,

OpenSSL by default only accepts side channel reports exploitable in real scenarios [5].

We thus also launch standard Prime+Probe attack to log cache set accesses. We aim to

quantify information in k leaked via o. We also analyze leakage distribution across pro-

gram points to localize flaws. Developers can prioritize patching vulnerabilities leaking

more information.

Two Vulnerablities: Secret-Dependent Control Branch and Data Access. Our threat

model focuses on two popular vulnerability patterns that are analyzed and exploited pre-

viously, namely, secret-dependent control branch (SCB) and secret-dependent data access

(SDA) [164, 73, 74, 244, 243, 37, 26]. SDA implies that memory access is influenced by

secrets, and therefore, monitoring which data cache unit is visited may likely reveal se-

crets [271]. SCB implies that program branches are decided by secrets, and monitoring

which branch is taken via cache may likely reveal secrets [164]. CACHEQL captures both

SCB and SDA, and it models secret information flow. That is, if a variable v is influenced

(“tainted”) by secrets via either explicit or implicit information flow, then control flow or

data access that depends on v are also treated as SCB and SDA. The definition of SDA/SCB

is standard and shared among previous detectors [244, 73, 243, 253, 255].

Detecting SDA Using CACHEQL.3 Consider two vulnerable programs depicted in Fig. 6.1.

In short, two program points in Fig. 1(a) have 128 (L6) and 512 (L11) memory accesses

that are secret-dependent (i.e., SDA). Developer can use Pin to log one memory access

trace o when executing Fig. 1(a), and by analyzing o, CACHEQL reports a total leakage of

768 bits. CACHEQL further apportions the SDA leaked bits as: 1) 2 bits for each of 128

memory accesses at L6, and 2) 1 bit for each of 512 memory accesses at L11. For Fig. 1(b),

two array lookups at L10 and L12 depend on the secret. Given a memory access trace

o, CACHEQL quantifies the leakage as 510 bits and apportions 255 bits for each SDA. We

discuss technical details of CACHEQL in Sec. 6.4, Sec. 6.5, and Sec. 6.6.

3SCB can be detected in the same way, and is thus omitted here.
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(a) SDA via implicit info. flow (L11).

// s is a 1024-bit key
BIGNUM s;

for(i=0; i<512; i+=4) {
// secret dependent
x[s[i:i+4] % 4] = 0;

}
for(; i<1024; i++) {
// secret dependent
if(s[i])
y[1] = 0;

}

// s is a 1024-bit key
BIGNUM s;

for(i=0;i<1024;i++) {
// random integer
x[urand() % 2048]=0;

} 

// secret dependent
y[s[0:256] / 2] = 0;
// secret dependent
z[s[256:512] / 2] = 0;

(b) Prog. with random data access (L6).
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Figure 6.1: Two pseudocode code of secret leakage. The secrets are 1024-bit keys. s[i:j]
are bits between the i-th (included) and j-th bit (excluded).

Comparison with Existing Quantitative Analysis.4 MicroWalk [255] measures informa-

tion leakage via mutual information (MI). However, we find that its output is indeed

mundane Shannon entropy rather than MI over different program execution traces, since

both key and randomness like blinding can differ traces. MicroWalk has two computing

strategies: whole-trace and per-instruction. For Fig. 1(b), MicroWalk reports 1024 leaked

bits using the whole-trace strategy. The per-instruction strategy localizes three leakage

program points, where each point leaks 1024 (L6), 255 (L10), and 255 (L12) bits, respec-

tively. However, it is clear that those 1024 memory accesses at L6 are decided by non-secret

randomness. Thus, both quantification and localization are inaccurate. Abacus [26] uses

trace-based symbolic execution to measure leakage at each SDA, by estimating number of

different secrets (s) that induces the access of different cache units. No implicit informa-

tion flow is modelled, thereby omitting to “taint” the memory access at L11 of Fig. 1(a).

Abacus quantifies leakage of Fig. 1(a) over o as 256 bits, since it only finds SDA at L6.

Program points may have dependencies. For instance, one branch may have its in-

formation leaked in its parent branch, and therefore, separately adding them together

largely over-estimates the leakage: Abacus outputs a total leakage of 413.6 bits in AES-

128, despite its 128-bit key length. CACHEQL precisely calculates the leakage as 128.0 bits

(Sec. 6.8.2). Also, some static analyses [73, 74, 49] have limited scalability due to heavy-

4We discuss their analysis about SDA; SCB is conceptually the same.
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Table 6.1: Benchmarking criteria for side channel detectors. !, 3, % denote support,
partially support, and not support.

{k1 {k2 {k3 {k4 {k5 {k6 {k7 {k8
CacheAudit [73, 74] % % % 3 % % % !

CacheD [244] % % ! % ! % % %

CaSym [37] % % % % ! % % %

CacheS [243] % % ! % ! % % %

Abacus [26] % % ! 3 ! % % %

CHALICE [49] % % % 3 % % % !

DATA [253, 252] % 3 ! % ! % ! 3

MicroWalk [255] % % ! 3 3 % ! 3

CANAL [232] % % % % ! % % !

Manifold [278] ! % ! % ! 3 ! !

CACHEQL ! ! ! ! ! ! ! !

weight abstract interpretation or symbolic execution. Real-world cryptosystems and me-

dia software are complex, with millions of records per side channel trace. In addition,

they are often unable to localize vulnerable points.

6.3 Related Works & Criteria

We propose eight criteria for a full-fledged detector. Accordingly, we review related

works in this field and assess their suitability. Sec. 6.8.3 empirically compares them with

CACHEQL. Also, many studies launch cache analysis on real-time systems and estimate

worst-case execution time (WCET) [56, 152, 154, 178]; we omit those studies as they are

mainly for measurement, not for vulnerability detection.

Execution Trace vs. Cache Attack Logs. Most existing detectors [244, 243, 37] assume ac-

cess to execution traces. In addition to recording noise-free execution traces (e.g., via Intel

Pin), considering real cache attack logs is equally important. Cryptosystem developers of-

ten require evidence under real-world scenarios to issue patches. For instance, OpenSSL

by default only accepts side channel reports if they can be successfully exploited in real-

world scenarios [5]. In sum, we advocate that a side channel detector should {k1 analyze

both execution traces and real-world cache attack logs.

Deterministic vs. Non-deterministic Observations. Deterministic observations imply that,
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for a given secret, the observed side channel is fixed. Decryption, however, may be non-

deterministic due to various masking and blinding schemes used in cryptosystems. Fur-

thermore, techniques like ORAM [87] can generate non-deterministic memory accesses

and prevent information leakage. Thus, memory accesses or executed branches may dif-

fer between executions using one secret. Nearly all previous works [244, 26, 243, 37] only

consider deterministic side channels, failing to analyze the protection offered by blind-

ing/ORAM and may overestimate leaks (not just keys, blinding/ORAM also change side

channel observations). We suggest that a detector should {k2 analyze both deterministic and

non-deterministic observations. CACHEQL uses statistics to quantify information leaks from

non-deterministic observations, as explained in Sec. 6.4.4.

Analyze Source Code vs. Binary. A detector should typically analyze software in exe-

cutable format. This allows the analysis of legacy code and third-party libraries. More

importantly, by analyzing assembly code, low-level details like memory allocation can be

precisely considered. Studies [74, 228] reveal that compiler optimizations could introduce

side channels not visible in high-level code representations. Thus, we argue that detectors

should {k3 be able to analyze program executables.

Quantitative vs. Qualitative. Qualitative detectors decide whether software leaks infor-

mation and pinpoint leakage program points [244, 243, 37]. Quantitative detectors further

quantify leakage from each software execution [73, 49, 74], or at each vulnerable program

point [26, 255]. We argue that a detector should {k4 deliver both qualitative and quantita-

tive analysis. Developers are reluctant to fix certain vulnerabilities, as they may believe

those defects leak negligible secrets [26]. However, identifying program points that leak

large amounts of data can push developers to prioritize fixing them. To clarify, though

quantitative analysis was previously deemed costly [118], CACHEQL features efficient

quantification.

Localization. Along with determining information leaks, localizing vulnerable program

points is critical. Precise localization helps developers debug and patch. Therefore, a de-

tector should {k5 localize vulnerable program points leaking secrets. Most static detectors strug-

gle to pinpoint leakage points [73, 74], as they measure the number of different cache sta-

tuses to quantify leakage. Trace-based analysis, including CACHEQL, can identify leakage

instructions on the trace that can be mapped back to vulnerable program points [244, 26].
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Key vs. Private Media Data. Most detectors analyze cryptosystems to detect key leak-

age [244, 73, 26]. Recent side channel attacks have targeted media data [265, 95]. Media

data like images used in medical diagnosis may jeopardize user privacy once leaked. We

thus advocate detectors to {k6 analyze leakage of secret keys and media data. Modeling in-

formation leakage of high-dimensional media data is often harder, because defining “in-

formation” contained in media data like images may be ambiguous. CACHEQL models

image holistic content (rather than pixel values) leakage using neural networks.

Scalability: Whole Program/Trace vs. Program/Trace Cuts. Some prior trace-based anal-

yses rely on expensive techniques (e.g., symbolic execution) that are not scalable. Given

that one execution trace logged from cryptosystems can contain millions of instructions,

existing works [244, 26] require to first cut a trace and analyze only a few functions on the

cutted trace. Prior static analysis-based works may use abstract interpretation [73, 243],

a costly technique with limited scalability. Only toy programs [73] or a few sensitive

functions are analyzed [243, 74, 37]. This explains why most existing works overlook

“non-deterministic” factors like blinding (criterion {k2 ), as blinding is applied prior to exe-

cuting their analyzed program/trace cuts. Lacking whole-program/trace analysis limits

the study scope of prior works. CACHEQL can analyze a whole trace logged by executing

production software, and as shown in Sec. 6.8, CACHEQL identifies unknown vulnera-

bilities in pre-processing modules of cryptographic libraries that are not even covered by

existing works due to scalability. In sum, we advocate that a detector should be {k7 scalable

for whole-program/whole-trace analysis.

Implicit and Explicit Information Flow. Explicit information flow primarily denotes se-

cret data flow propagation, whereas implicit information flow models subtle propagation

by using secrets as code pointers or branch conditions [215]. Considering implicit infor-

mation flow is challenging for existing works based on static analysis due to scalability.

They thus do not fully analyze implicit information flow [244, 243, 37, 26]. We argue a de-

tector should {k8 consider both implicit and explicit information flow to comprehensively model

potential information leaks. CACHEQL delivers an “end-to-end” analysis and identifies

changes in the trace due to either implicit or explicit information flow propagation of se-

crets.

Comparing with Existing Detectors. Table 6.1 compares existing detectors and CACHEQL
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to the criteria. Abacus and MicroWalk cannot precisely quantify information leaks in

many cases, due to either lacking implicit information flow modeling or neglecting de-

pendency among leakage sites (hence repetitively counting leakage). CacheAudit only

infers the upper bound of leakage. Thus, they partially satisfy {k4 . MicroWalk quantifies

per-instruction MI to localize vulnerable instructions, whose quantified leakage per in-

struction, when added up, should not equal quantification over the whole-trace MI (its

another strategy) due to program dependencies. Also, MicroWalk cannot differ random-

ness (e.g., blinding) with secrets. It thus partially satisfies {k5 .

DATA [253, 252] launches trace differentiation and statistical hypothesis testing to de-

cide secret-dependency of an execution trace. Similar as CACHEQL, DATA can also ana-

lyze non-deterministic traces. Nevertheless, we find that DATA, by differentiating traces

to detect leakage, may manifest low precision, given it would neglect secret leakage if a

cryptographic module also uses blinding. It thus partially satisfies {k2 . More importantly,

DATA does not deliver quantitative analysis.

Recent research attempts to reconstruct media data like private user photos from side

channels [278, 137, 261]. In Table 6.1, we compare CACHEQL with Manifold [278], the

latest work in this field. Manifold leverages manifold learning to infer media data. Mani-

fold learning is not applicable to infer secret keys (as admitted in [278]): unlike media data

which contain perception constraints retained in manifold [101], each key bit is sampled

independently and uniformly from 0 or 1. It thus partially fulfills {k6 . CACHEQL is the

first to quantify information leaks over cryptographic keys and media data.

Implicit information flow ( {k8 ) is not tracked by most existing static analyzers. Analyz-

ing implicit information flow requires considering more program statements and data/-

control flow propagations, which often largely increases the code chunk to be analyzed.

This introduces extra hurdles for static analysis-based approaches. DATA and MicroWalk

also do not systematically capture implicit information flow. DATA/MicroWalk first align

traces and then compare aligned segments, meaning that they can overlook holistic differ-

ences (unalignment) on traces. CACHEQL satisfies {k8 as it directly observes and analyzes

changes in the side channel traces. Given any information flow, either explicit or implicit,

can differ traces, CACHEQL captures them in a unified manner. Nevertheless, it is evident

that the implicit information flow cannot be captured by CACHEQL unless it is covered in
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the dynamic traces.

Clarification. These criteria’s importance may vary depending on the situations. Having

only some of these criteria implemented is not necessarily “bad,” which may suggest that

the tool is targeted for specific use cases. Analyzing private image leakage ( {k6 ) may not

be as important as others, especially for cryptosystem developers. We consider image

leakage because recent works [265, 95, 278] consider recovering private media data. We

present eight criteria for building full-fledged side-channel detectors. The future develop-

ment of detectors can refer to this chapter and prioritize/select certain criteria, according

to their domain-specific need. Also, we clarify that in parallel to research works that de-

tect side channel leaks, another line of approaches (i.e., static verification) aims at deriving

precise, certified guarantees [73, 66].

As clarified above, CACHEQL can analyze real attack logs ( {k1 ) and media data ( {k6 ).

However, for the sake of presentation coherence, we discuss them in Sec. 6.9. In the rest

of this chapter, we explain the design and findings of CACHEQL using Pin-logged traces

from cryptosystems.

6.4 Quantifying Information Leakage

Overview. This section discusses quantitative measurement of information leaks over side

channel observations. We start with preliminaries in Sec. 6.4.1. The overview of our ap-

proach is illustrated in Fig. 6.2. Sec. 6.4.2 introduces MI computation via Point-wise De-

pendence (PD). Then, Sec. 6.4.3 recasts calculating PD into computing conditional prob-

ability (CP). CACHEQL employs parameterized neural networks Fq (see Sec. 6.5) to esti-

mate CP, which is carefully designed to quantify leakage of keys and private images from

extremely lengthy side channel traces. The error of estimating CP with Fq is bounded by

a negligible e. In contrast, prior works use marginal probability (MP) to estimate MI. CP

outperforms MP in terms of lower cost, fewer errors, and better coverage, as compared in

Sec. 6.4.3. In Sec. 6.4.4, we extend the pipeline in Fig. 6.2 to handle non-deterministic side

channel traces.
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MI PD CP

MP

assume k[i] is
 independent, 

which may be incorrect

no assumption on k

low cost
low error

high coverage 2. handle lengthy side channel trace
1. analyze secret key + media data

|K| is a constant

Figure 6.2: Overview. |K| is the total number of possible keys. |K| is assumed as known
to detectors by all existing quantification tools including CACHEQL.

6.4.1 Problem Setting

In general, side channel analysis aims to infer k from o. The information leak of K in O can

be defined as their MI:

I(K; O) = H(K)� H(K|O), (6.1)

where H(·) denotes the entropy of an event. According to Shannon’s information theory,

I(K; O) describes how much information about K can be obtained by observing O. Con-

sider the program in Fig. 3(a), where the probability of correctly guessing each k 2 K (i.e.,

s 2 {0,1,2,3}), without any observation, is 1
4 . Thus, H(K) = � log 1

4 = 2 bits.5 Never-

theless, the observation o = a[0] (L6) indicates that k must be “0” (i.e., the probability is

1), thus, H(K|o=a[0]) = � log 1 = 0. Therefore, a[0] leaks 2 bits of information. Similarly,

the memory access b[0] (L9) leaks log 4
3 bits of information since H(K|o=b[0]) = � log 1

3 =

log 3. Ideally, a secure program should have H(K) = H(K|O), indicating no information

in K can be obtained from O. We continue discussing Fig. 3(b) in Sec. 6.4.3.

6.4.2 Computing MI via PD

Following Eq. 6.1, let k and o be random variables whose probability density functions

(PDF) are p(k) and p(o). The MI I(K; O) can be represented in the following way,

5Given log base 2 is used by default, the unit of information is bit.
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Each green block (i.e., two joint cubes in green) denotes a k and its induced o
(<k, o>) and each yellow block is produced by randomly combining k and o.
Each block (both green and yellow) has equal probability.
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(b) An illustration of and .

//s: evenly {0,1,2,3}
int s;
array a[1], b[1];
// leak log4 = 2 bits
if(s == 0)
a[0] = 1;

// leak log(4/3) bits
else
b[0] = 1;

(a) A vulnerable program.
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Figure 6.3: Quantification of side channel leaks.

I(K; O) =
Z Z

K⇥O
p(k, o) log

p(k, o)
p(k)p(o)

dkdo

= EPK⇥O


log

p(k, o)
p(k)p(o)

�
= EPK⇥O [log c(k, o)],

(6.2)

where p(k, o) is the joint PDF of K and O, and PK⇥O is the joint distribution. c(k, o) =

p(k,o)
p(k)p(o) denotes point-wise dependency (PD), measuring discrepancy between the probabil-

ity of k and o’s co-occurrence and the product of their independent occurrences. Accord-

ingly, log c(k, o) denotes the point-wise mutual information (PMI).

The MI of K and O, by definition, is the expectation of PMI. That is, Eq. 6.2 measures the

dependence retained in the joint distribution (i.e., hk, oi ⇠ PK⇥O) relative to the marginal

distribution of K and O under the assumption of independence (i.e., hk, oi ⇠ PKPO, where

PK and PO are marginal distributions of K and O). When K and O are independent, we

have p(k, o) = p(k)·p(o) and p(k,o)
p(k)p(o) is 1, thus, the leakage is log 1=0. Nevertheless, when-

ever o leaks k, k and o should co-occur more often than their independent occurrences,

and therefore, c(k, o) > 1 and log c(k, o) > 0.

Eq. 6.2 illustrates two aspects for quantitatively computing information leakage: 1)

PMI log c(k=k⇤, o=o⇤), denoting per trace leakage for a specific k⇤ and its corresponding

o⇤, and 2) MI I(K; O), denoting program-level leakage over all possible secrets k 2 K. To
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compute I(K; O), we average PMI over a collection of hk, oi, where sample-mean offers an

unbiased estimation for the expectation E(·) of a distribution [45].

Comparison with Prior Works. Abacus [26] launches symbolic execution on Pin-logged

execution traces. It makes a strong assumption that k is uniformly distributed, i.e., p(k=k⇤)

= 1
|K|

.6 It also assumes that each trace must be deterministic, such that p(k=k⇤, o=o⇤) =

p(k=k⇤) for a given o⇤ and its corresponding k⇤. This way, approximating MI in Eq. 6.2

is recasted to estimating the marginal probability (MP) p(o=o⇤). At a secret-dependent

control transfer or data access point l, Abacus finds all k 2 K0 that cover l. The leakage

at l is computed as � log p(o=o⇤) = � log( |K0|
|K|

). Deciding |K0| via constraint solving is

costly, and therefore, Abacus uses sampling to approximate |K0|. Nevertheless, estimating

MP with sampling is unstable and error-prone (see Sec. 6.4.3). MicroWalk also samples k

to estimate MP; it thereby has similar issues. CacheAudit quantifies program-wide leak-

age. Using abstraction interpretation, it only analyzes small programs or code fragments,

and it infers only leak upper bound. CACHEQL precisely computes PMI/MI via PD and

localizes flaws. We now introduce estimating PD.

6.4.3 Estimating PD c(k, o) via CP

Because PD makes no assumption on the secret’s distribution, our approach can infer dif-

ferent types of secrets (e.g., key or images). We denote k as a general representation of

one secret, and for simplicity, we write p(k=k⇤) as p(k⇤) in followings. The same applies

for o and o⇤. o⇤ is one side channel observation produced by k⇤. However, o⇤ may not

be the only one, given randomness like blinding can also induce different observations

even with a fixed k⇤. We now recast computing PD over deterministic side channels as

estimating conditional probability (CP) via binary classification [238].

Transforming PD to CP

Let T depict that a pair hk, oi co-occurs (i.e., positive pair hk, oi ⇠ PK⇥O). Let F denote that

k and o in hk, oi occur independently (i.e., negative pair hk, oi ⇠ PKPO). Therefore, p(k⇤, o⇤)

6“Uniform distribution” does not hold for image pixel values [278].
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and p(k⇤)p(o⇤) can be represented as the posterior PDF p(k⇤, o⇤|T) and p(k⇤, o⇤|F), respec-

tively. According to Bayes’ Theorem, PD c(k⇤, o⇤) is re-expressed as

PD =
p(k⇤, o⇤)

p(k⇤)p(o⇤)
=

p(k⇤, o⇤|T)
p(k⇤, o⇤|F)

=
p(F)
p(T)

p(T|k⇤, o⇤)
p(F|k⇤, o⇤)

, (6.3)

where p(T) and p(F) are constants (decided by the analyzed software). Given PKPO is

produced by separating each pair in PK⇥O and collecting random combinations of k and

o, p(F)
p(T) equals to |K|. In practice, PK⇥O is prepared by running the analyzed software with

each k⇤ and collecting the corresponding o⇤. For the program in Fig. 3(a), Fig. 3(b) colors

PK⇥O and PKPO in green and yellow . Since p(F)
p(T) is unrelated to k⇤ or o⇤, c(k⇤, o⇤) —

representing leaked k⇤ from o⇤ — is only decided by CP p(T|k⇤, o⇤). A larger CP indicates

that more information is leaked.

• Example: We demonstrate this transformation using Fig. 6.3: for k=“0” and o=a[0], fetch-

ing a block of h0,ai from Fig. 3(b) has a 50% chance of selecting the green one (in the

upper-left corner). That is, CP=p(T|“0”, a[0])=0.5, and therefore, we can have the equal-

ity p(T|“0”, a[0])= p(F|“0”, a[0]). Since p(F)
p(T)=4, Eq. 6.3 yields 4⇥ 0.5

0.5 = 4, and therefore,

log c(k, o) in Eq. 6.2 yields log 4 = 2 bits, equaling the leakage result computed in Sec. 6.4.1.

Advantages of CP vs. Marginal Probability (MP)

CP captures what factors make o⇤, which corresponds to k⇤, distinguishable from other

o. By observing both dependent and independent hk, oi pairs, CACHEQL measures the

leakage via describing how the distinguishability between different o is introduced by the

corresponding k. It is principally distinct with existing quantitative analysis [26, 73, 255].

Abacus and MicroWalk approximate MP p(o⇤) via sampling, which has the following

three limitations compared with CP.

Computing Cost. Estimating CP is an one-time effort over a collection of hk, oi pairs. Es-

timating MP, however, has to re-perform sampling for each hk, oi. Note that the cost for CP

to estimate over the collection of hk, oi and each re-sampling of MP is comparable. Thus,

MP is much more costly.
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Estimation Error. Recall that for a leakage program point l, Abacus finds all k 2 K0 that

cover l via constraint solving and denotes the leakage as � log( |K0|
|K|

). Suppose it observes

the first for loop in Fig. 1(a) has 128 consecutive accesses to x[0]. To quantify the leakage,

Abacus constructs the symbolic constraint (s[0:4]%4 == 0) ^ . . . ^ (s[508:512]%4 == 0).

Nevertheless, sampling one key that satisfies this constraint has only an extremely low

probability of (1
4)128. That is, the MP can be presumably underestimated when |K0| is

small. Thus, the leaked information can be largely overestimated via � log( |K0|
|K|

). Mi-

croWalk observes o⇤’s frequency by sampling different k; it thus has similar issues. Worse,

once o⇤ is influenced by randomness like blinding, no o⇤ would be identical. Thus, it will

incorrectly regard p(o⇤) as 1
|K|

and report log |K| leaked bits (i.e., equals to the key length).

In contrast, Eq. 6.3 is free from this issue: even o⇤ is only produced by processing one or a

few k, CACHEQL directly characterizes PD via CP p(·|k⇤, o⇤).

Overall, CP reflects: 1) the portion of records in o⇤ affected by its k⇤ [238], and 2) to

what extent k⇤ affects each record in o⇤ (see Example below). Further, since any difference

on o⇤, whether due to explicit or implicit information flows, contributes to distinguishing

o⇤ from the rest o 2 O, CACHEQL takes both explicit and implicit flows into consideration.

• Example: Consider the memory accesses at L10 and L12 of the program in Fig. 1(b) and

suppose o⇤ is “y[0], z[0]”. To estimate the leakage over o⇤ via MP, it requires sampling keys

where s[0:256] constitutes either 1 or 0, so do the second 256 bits, which results in a total

of 4 cases for s[0:512]. s[0:512] has 2512 cases, denoting a large search space. Nevertheless,

CP can infer the leakage by only observing that, the first record in o increases “1” (i.e., dis-

tinguishable from other o) whenever s[0:256] increases 2 (with no need to simultaneously

consider s[256:512]). The same applies to the second 256 bits.

Coverage Issue. CACHEQL, by using CP, principally alleviates the coverage issue of con-

ventional dynamic methods. Consider the program in Fig. 4(c), CACHEQL can quantify

the 8 SDA without covering all paths, since CP captures how o changes with k. As shown in

Fig. 4(b), covering a few cases is sufficient to know that o increases “one” (e.g., a[0] ! a[1])

when k increases one (e.g., 0 ! 1), thus inferring program behavior in Fig. 4(a). Prior dy-

namic methods need to fully cover all paths to infer the program behavior and quantify

the leaks, which is hardly achievable in practice.
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switch(s[0:3]) {
// s is secret
case 0: a[0]=0; break;
case 1: a[1]=0; break;
…
case 6: a[6]=0; break;
case 7: a[7]=0; break;

}

1
2
3
4
5
6
7
8

(c) vulnerable program.
0 2 4 6

a[0]

a[2]

a[4]

a[6]

0 2 4 6

k=1, o=a[1]
k=2, o=a[2]

k=5, o=a[5]

(a) program behaviors. (b) inferred behaviors by CP.

Figure 6.4: A schematic view of how the coverage issue of dynamic methods is alleviated
via CP when quantifying leaks.

Obtaining CP p(T|k, o) via Binary Classification

We show that performing probabilistic classification can yield CP. In particular, we em-

ploy neural networks Fq (parameterized by q) to classify a pair of hk, oi, whose associated

confidence score is p(T|k, o). Details of Fq are in Sec. 6.5.

Using neural networks (NN) to estimate MI is not our novelty [238, 30]. However,

we deem NN as particularly suitable for our research context for three reasons: 1) non-

parametric approaches, as in [85], suffer from “curse of dimensionality” [32, 33]. They

are thus infeasible, as even the AES-128 key is 128-dimensional. NN shows encouraging

capability of handling high-dimension data (e.g., images with thousands of dimensions).

2) Recent works show that NN can effectively process lengthy but sparse data, including

side channel traces where only a few records out of millions are informative and leaking

program secrets [278, 137, 261]. 3) It’s generally vague to define “information” in media

data. For instance, a 64⇥ 64 image may retain the same information as a 32⇥ 32 version

from human perspective since the content is unchanged. Recent research [278] shows that

high-dimensional media data have perceptual constraints which implicitly encode image

“information.” NNs are currently widely used to process media data and extract critical

information for comprehension.
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6.4.4 Handling Non-determinism

In practice, due to hardening schemes like RSA blinding and ORAM, side channel obser-

vations can be non-deterministic, where memory access traces may vary during different

runs despite the same key is used. As discussed in Table 6.1 (i.e., {k2 ), however, non-

determinism is not properly handled in previous (quantitative) analysis.

Generalizability. For deterministic side channels, only k induces changes of o. Fitting Fq

on enough hk, oi pairs from PK⇥O and PKPO can capture distinguishability for quantifi-

cation. In contrast, for non-deterministic side channels, the differences between o may

be due to random factors, not only k. Therefore, in addition to distinguishability between

hk, oi pairs, we also need to consider generalizability to alleviate over-estimation caused by

random differences.

In statistics, cross-validation is used to test generalizability. Here, we propose a simple

yet effective method by using a de-bias term with cross-validation to prune non-determinism

in the estimated PD. We first mix hk, oi from PK⇥O and PKPO and split them into non-

overlapping groups. Then, we assess if the distinguishability over one group applies to

the others.

PD Estimation via De-biasing. We first extend the PD computation in Eq. 6.3 to handle

non-determinism. In Eq. 6.3, F and T are finite sets, and p(F)/p(T) equals to |K|. Here,

we conservatively assume that there exist infinite non-deterministic side channels. That

is, F is a set with infinite elements. We first require m positive pairs hk, oi ⇠ PK⇥O, dubbed

as T(m). We also construct m0  m2 negative pairs (i.e., hk, oi ⇠ PKPO), denoted as F(m0),

by replacing o (or k) of a pair from PK⇥O with that of other random pairs. This way, PD

defined in Eq. 6.3 is extended in the following form:

PD =
log |K|

log(m0/m)
log

p(F(m0))

p(T(m))

p(T|k⇤, o⇤)
p(F|k⇤, o⇤)

, (6.4)

where the p(F(m0))/p(T(m)) works as a de-bias term to assess the generalizability for non-

deterministic side channels. We denote p(T|k⇤, o⇤)/p(F|k⇤, o⇤) as the leakage ratio: a 100%

ratio implies that all bits of the key are leaked whereas 0% ratio implies no leakage. Con-

sider the following two cases:
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• Case1: In case the differences between samples from T(m) and F(m0) are all introduced

by random noise (i.e., each o⇤ is independent of its k⇤), the distinguishable factors should

not be generalizable, and the above formula yields a zero leakage. To understand this, let

our neural networks Fq identify each pair based on random differences, which is indeed

equivalent to memorizing all pairs. This way, when it predicts the label of hk, oi, the

output simply follows the frequency of T(m) and F(m0). Therefore, given an unseen pair

hk⇤, o⇤i, Fq has p(T|k⇤, o⇤)/p(F|k⇤, o⇤) = p(T(m))/p(F(m0)), and the estimated leakage is

thus log p(F(m0))
p(T(m))

p(T(m))

p(F(m0))
= log 1 = 0.

• Case2: If o⇤ depends on k⇤, p(T|k⇤, o⇤) would not merely follow the distribution of T(m)

and F(m0), indicating a non-zero leakage. More importantly, de-biased by p(F(m))/p(T(m0)),

quantifying leakage using Eq. 6.4 only retains differences related to k. This way, we pre-

cisely quantify leakage for non-deterministic side channels.

Implementation Consideration. To alleviate randomness in each o⇤, we collect four ob-

servations o⇤i by running software using k⇤ for four times. By classifying all hk⇤, o⇤i i as

positive pairs, Fq is guided to extract common characters shared by o⇤i while neglecting

randomness in each o⇤i . Also, considering un-optimized neural networks generally make

prediction by chance (i.e., p(T|k, o) = p(F|k, o)), we let m = m0.

6.5 Framework Design

Fig. 6.5 shows the pipeline of CACHEQL, including three components: 1) a sparse encoder

S for converting side channel traces o⇤ into latent vectors, 2) a compressor R to shrink

information in o⇤, and 3) a classifier C that fits the CP in Eq. 6.3 via binary classification.

We compute CP p(T|k⇤, o⇤) using the following pipeline:

p(T|k⇤, o⇤) = Fq(k⇤, o⇤) = C(k⇤, R(S(o⇤))), (6.5)

where parameters of these three components are jointly optimized, i.e., q = qS [ qR [ qC .

The framework takes a tuple hk, oi as input. As introduced in Sec. 6.4.3, we label a tuple

hk, oi as positive if o is produced when the software is processing k. A tuple is otherwise
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Figure 6.5: The framework of CACHEQL. hk⇤, o⇤i2PK⇥O; it is labeled as T. In contrast,
hk0, o⇤i2PKPO and is labeled as F.

negative. In Fig. 6.5, hk⇤, o⇤i is positive and hk0, o⇤i is negative.

S : Encoding Lengthy and Sparse Side Channel Traces. According to our tentative ex-

periments, naive neural networks perform poorly when analyzing real-world software

due to the highly lengthy side channel traces. An o, obtained via Pin or cache attacks, typ-

ically contains millions of records, exceeding the capability of typical neural networks.

ORAM can add dummy memory accesses, often resulting in a tenfold increase of trace

length. Yuan et. al [278] found that side channel traces are generally sparse, with few

secret-dependent records. It also has spatial locality: adjacent records on a trace often

come from the same or related functions. Encoder S is inspired by [278]: to approximate

the locality, we fold the trace into a matrix (see configurations in Sec. 6.8). We employ

the design in [278] to construct S as a stack of convolutional NN layers. We find that our

pipeline effectively extracts informative features from o.

R: Shrinking Maximal Information. A side channel trace o⇤ frequently contains informa-

tion unrelated to secret k⇤. Our preliminary study shows that directly bridging the latent

vectors (outputs of S) to C is difficult to train. This stage thereby compresses S’s output

in an information-dense manner. We propose that information7 in o⇤, namely H(o⇤), should

never exceed H(k⇤). Accordingly, we apply mathematical transformations R to confine the

value range of S’s outputs. We propose various transformations for media data and secret

keys; as discussed below.

7Only secret-related information. Non-secret variables (e.g., public inputs) that affect o are regarded as
randomness and handled as in Sec. 6.4.4.
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Media Data. We use image to demonstrate the cases for media data; the conclusion can be

extended to other media data straightforward [278]. It is generally obscure to measure

the amount of information encoded in high-dimensional media data like images [281]. To

extract information, an image, before being fed into modern neural networks (e.g., classi-

fier C in CACHEQL), is generally normalized into [�1, 1] and represented as a channel ⇥

width ⇥ height matrix [135]. Let a private image be km and the associated side channel

log be om, we set the output of S(om) as a matrix of the same size. Accordingly, our

compressor Rm is implemented using the tanh : [�•, •] ! [�1, 1] function, facilitating

H(om)  H(km). tanh is parameter free (i.e., qR = ∆), eliminating extra training cost.

Also, if certain properties in an image are particularly desirable by attackers, e.g., the

gender of portrait images, km and the matrix from S(om) can be replaced with a vector-

ized representation for image properties. We refer readers to [202] for vectorizing image

attributes.

Cryptographic Keys. For a cryptographic key kc of length L, there are total 2L uniformly

distributed key instances. The information in one key instance is thus H(k) = log 2L = L

bits. Since a key only contains binary values and neural networks are hard to be de-

ployed with binary parameters, for the associated side channel log oc, we need to trans-

form the floating-point encoding output S(oc), which is accordingly a vector of length

L, into binary bits. Existing profiling-based side channel attacks map side channels to

keys via L bit-wise classification tasks [107, 124, 98]. In each task, a floating point is

transformed to 1 if it is greater than a threshold. Nevertheless, this transformation is not

applicable in R, given that it is not differentiable, which impedes the optimization of q.

Inspired by the optimization for binary variables [61, 62], we design Rc by joining two

components: 1) a non-parametric sigmoid : [�•, •] ! [0, 1] function which generates L

independent (as bits in kc are independent) probabilities, and 2) a parametric Bernoulli

distribution Bern : Pr(Bern(·) = 1) + Pr(Bern(·) = 0) = 1 which takes its inputs, i.e.,

sigmoid(S(oc)), as parameters for optimization. Thus, we have Rc = Bern � sigmoid and

qRc = sigmoid(S(oc)). See our codebase [6] for details.

C: Optimizing Parameters via Classification. Let the parameter space be Q and q 2 Q.

To train a neural network, we search for parameter q† 2 Q to maximize a pre-defined ob-

jective. As shown in Eq. 6.3, we recast leakage estimation as approximating CP p(T|k, o),

156



which is further formed as a classification task using Fq. q is updated by gradient-guided

search in Q to maximize the following objective:

EPK⇥O [log Fq(k, o)] + EPKPO [log(1�Fq(k, o))], (6.6)

which is a standard binary cross-entropy loss over PK⇥O and PKPO. Overall, this loss

function compares the output of Fq to the ground truth, and it calculates the score that

penalizes Fq based on its output distance from the expected value.

• Example: Consider the program in Fig. 6.3, in which we have h0,ai labeled as T. To pre-

pare PKPO, there is one h0,ai marked as F when randomly combining k and o separated

from pairs in PK⇥O. Thus, Fq(“0”, a[0]) is simultaneously guided to output 1 and 0 with

equal penalty. As expected, it eventually yields 0.5 to minimize the global penalty, which

outputs a leakage of 4 bits (since |K| = 4) following Eq. 6.7.

Computing PD. Let the optimized parameter be q†, our definition of PD in Eq. 6.3 is re-

expressed in the following way to compute point-wise information leak of k⇤ in its derived

o⇤:

cq†(k⇤; o⇤) = |K|
Fq†(k⇤, o⇤)

1�Fq†(k⇤, o⇤)
(6.7)

Furthermore, we have the following program-level information leak assessment over K

and O.

I(K; O) = EPK⇥O [log cq†(k, o)] (6.8)

Approximation and Correctness. Having access to all samples from a distribution P is

difficult, if not impossible. As a common approximation, the objective in Eq. 6.6 is instead

optimized over the empirical distribution P(n) produced by n samples drawn from P. Thus,

the estimated leakage becomes:

Î(n)
q† (K; O) = E

P(n)
K⇥O

[log ĉq†(k, o)]. (6.9)
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Despite we estimate MI for side channels, the skeleton for analyzing correctness can be

adopted from prior works [238, 30], since all approaches involve optimizing parameter-

ized neural networks. In particular, we prove that 9q† 2 Q,

| Î(n)
q† (K; O)� I(K; O)|  O(

q
log(1/d)/n), (6.10)

with probability at least 1� d where 0 < d < 1. We present detailed proofs in Sec. 6.11.1.

6.6 Apportioning Information Leakage

We analyze how leakage over ho⇤, k⇤i is apportioned among program points. This section

models information leakage as a cooperative game among players (i.e., program points).

Accordingly, we use Shapley value [220], a well-developed game theory approach, to ap-

portion player contributions.

Overview. We use Shapley value (described below) to automatically flag certain records

on a trace that contribute to leakage. Those flagged records are automatically mapped to

assembly instructions using Intel Pin, since Pin records the memory address of each exe-

cuted instruction. We then manually identify corresponding vulnerable source code. We

report identified vulnerable source code to developers and have received timely confir-

mation. To clarify, this step is not specifically designed for Pin; users may replace Pin with

other dynamic instrumentors like Qemu [31] or Valgrind [187].

Shapley value decides the contribution (i.e., leaked bits) of each program point covered

on one trace o. To compute the average leakage (as reported in Sec. 6.8.3), users can analyze

multiple traces and average the leaked bits at each program point. We now formulate

information leakage as a cooperative game and define leakage apportionment as follows.

Definition 3 (Leakage Apportionment). Given total n bits of leaked information and m pro-

gram points covered on the Pin-logged trace, an apportionment scheme allocates each program

point ai bits such that Âm
i=1 ai = n.

Shapley Value. We address the leakage apportionment via Shapley value. Recall that

each observation o denotes a trace of logged side channel records when target software is
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processing a secret k. Let f(o) be the leaked bits over one observation o, and let Ro be the

set of indexes of records in o, i.e., Ro = {1, 2, · · · , |o|}. For all S ✓ Ro \ {i}, the Shapley

value for the i-th side channel record is formally defined as

pi(f) = Â
S

|S|!(|Ro|� |S|� 1)!
|Ro|!

[f(oS[{i})� f(oS)], (6.11)

where pi(f) represents the information leakage contributed by the i-th record in o. oS de-

notes that only records whose indexes in S serve as players in this cooperative game, and

accordingly oRo = o. Eq. 6.11 is based on the intuition that contribution of a player (i.e., its

Shapley value) should be decided by its marginal contribution to all 2|o|�1 coalitions over

the remaining players. All players cooperatively form the overall leakage f(o).

6.6.1 Computation and Optimization

The conventional procedure of deciding each player’s contribution pi(f) for f requires

to generate a collection of variants V over o, where in each variant ov 2 V, some players

involved and others removed [220]. In our scenario, it is infeasible to however remove

a player when estimating leakage—removing a side channel record requires a new f.

Similar to [171], we propose to involve or remove a side channel record from o as follows:

Definition 4 (Involved). The i-th record of o gets involved in f(o) if o[i] is retained.

Definition 5 (Removed). The i-th record of o is removed from f(o) if o[i] is reset to a constant,

namely “base”.

The intuition is that, given k, if all records in its derived side channel observation o, are

set to the same constant, i.e., o∆ = [base, . . . , base], it’s obvious that o∆ leaks no information

of k, namely f(o∆) = 0. Conversely, by gradually setting o∆[i] = o[i], which turns into

o{i}, we finally have f(oRo) = f(o). The base is 0 in our setting for simplicity.

As stated in Sec. 6.6, computing Shapley value is costly, with complexity O(2|o|). This

is particularly challenging, since a side channel trace o frequently contains millions of
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records. We now propose several simple yet highly effective optimizations which suc-

cessfully reduce the time complexity to (nearly) constant. These optimizations are based

on domain knowledge and observations about side channel traces.

Approximating All and Tuning Later. Shapley value given in Eq. 6.11 can be equivalently

expressed as [45]:

pi(f) = Â
u2Perm(Ro)

1
|Ro|!

[f(oui[{i})� f(oui)]

= EPerm(Ro)[f(oui[{i})� f(oui)],

(6.12)

where u is a permutation8 that assigns each position t a player indexed with u(t) and

Perm(Ro) is the set of all permutations over side channel records with indexes in Ro. ui

is the set of all predecessors of the i-th participant in permutation u, e.g., if i = u(t), then

ui = {u(1), · · · , u(t� 1)}.

This equation transforms the computation of Shapley values into calculating the ex-

pectation over the distribution of u. Each time for a randomly selected u, we can calculate

f(o{u(1),··· ,u(j)}) and pu(j)(f) for all j by incrementally setting o[u(j)] as involved. Each

pu(j)(f) is further updated as more permutations u are sampled. From the implemen-

tation side, Eq. 6.11 iteratively calculates accurate Shapley values for each record (but

too slow), whereas Eq. 6.12 approximates Shapley values for all side channel records and

tunes the values in later iterations of updates. We point out that Eq. 6.12 is more desirable

for side channels, because not all side channel records are correlated. That is, updating Shap-

ley value for one record may not affect the results of other records (i.e., “Dummy Players”;

see Theorem 3 in Sec. 6.11.2). Given that sample mean converges to the true expectation

when #samples increases, pu(j)(f) reaches its true value when it gets convergent. As a

result, the calculation can be terminated early to reduce overhead, once the Shapley val-

ues stay unchanged. Our empirical results show that the Shapley values have negligible

changes (i.e., the maximal difference of adjacent updates is less than 0.5) after only tens of

updates.

8A set of permuted indexes. Note that the permutation does not exchange side channel records; it provides
an order for records to get involved.
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Pruning Non-Leaking Records Using Gradients. As discussed in Sec. 6.5, real-world soft-

ware often generates lengthy and sparse side channel records [26, 278, 37]. That is, usually

only a few records in a trace o really contribute to inferring secrets, and most records are

“Null Players” (has no leak; see Theorem 3.1 in Sec. 6.11.2) in this cooperative game. Re-

call that the f is formed by neural networks, whose gradients are typically informative.

Here, we use gradients to prune Null Players before computing the standard Shapley val-

ues. In general, neural networks characterize the influence of one input element (i.e., one

record on o) via gradients, and the volumes of gradients over inputs reflect how sensitive

the output is to local perturbations on these input elements: higher volumes suggest more

important elements.

We first rank all records by gradient volumes. Then, starting with the top one, we

gradually set each record as removed. This way, we expose Null Players, as they are

the remaining ones left when the leakage is zero. We find that, by setting at most a few

hundred records as removed (which is far less than |o|), the leakage can be reduced to

zero.

Batch Computations. The above optimizations reduce cost from O(2|o|) to hundreds of

calls to f. Further, modern hardware offers powerful parallel computing, allowing neural

networks to accept a batch of data as inputs. Therefore, we batch the computations formed

in previous steps; eventually, with one or two batched calls to f, whose cost is (nearly)

constant and negligible, we obtain accurate Shapley values.

Error Analysis. Our above approximation of Shapley value is 1) unbiased: it arrives the

ground truth value with enough iterations. It is also 2) convergent: such that we can finish

iterating whenever the approximated value unchanged.

Let the estimated and ground truth Shapley value be p̂ and p. Previous studies have

pointed out that p̂ ⇠ N (p, s2

m ) where N is the normal distribution and m is #iterations. It

is also proved that s2 < (pmax�pmin)2

4 where pmax and pmin are the maximum and minimal

p̂ during all iterations [45, 44].

Accuracy. Shapley value is based on several important properties that ensure the accuracy

of localization [220]. In short:
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Enabled by Shapley value, leakage localization, as a cooperative game, is precise with
nearly no false negatives.

The standard Shapley value ensures no false negatives (see Theorem 3.1 in Sec. 6.11.2).

Nevertheless, since we trade accuracy for scalability to handle lengthy o, our optimized

Shapley value may have a few false negatives. Empirically, we find that it is rare to miss a

vulnerable program point, when cross-comparing with findings of previous works [243].

6.7 Implementation

We implement CACHEQL in PyTorch (ver. 1.4.0) with about 2,000 LOC. The C of CACHEQL

uses convolutional neural networks for images and fully-connected layers for keys; see

details in [6]. We use Adam optimizer with learning rate 0.0002 for all models. We find

that the learning rate does not largely affect the training process (unless it is unreasonably

large or small). Batch size is 256. We ran experiments on Intel Xeon CPU E5-2683 with

256GB RAM and a Nvidia GeForce RTX 2080 GPU. For experiments based on Pin-logged

traces, Sec. 6.8.4 presents the training time: CACHEQL is generally comparable or faster

than prior tools. Experiments for Prime+Probe-logged traces take 1–2 hours.

6.8 Evaluation

We evaluate CACHEQL by answering the following research questions. RQ1: What are

the quantification results of CACHEQL on production cryptosystems and are they correct?

RQ2: How does CACHEQL perform on localizing side channel vulnerabilities? What

are the characteristics of these localized sites? RQ3: What are the impact of CACHEQL’s

optimizations, and how does CACHEQL outperform existing tools? RQ4: How is the

extendability of CACHEQL to different types of software and forms of side channels? We

first introduce evaluation setups below.
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6.8.1 Evaluation Setup

Software. We evaluate T-table-AES and RSA in OpenSSL 3.0.0, MbedTLS 3.0.0, and Libgcrypt

1.9.4. We consider an end-to-end pipeline where cryptographic libraries load the private

key from files and decrypt ciphertext encrypted from “hello world.” We quantify input

image leaks for Libjpeg-turbo 2.1.2. We use the latest versions (by the time of writing)

of all these software. We also assess old versions, OpenSSL 0.9.7, MbedTLS 2.15.0 and

Libgcrypt 1.6.1, for a cross-version comparison. Some of them were also analyzed by ex-

isting works [244, 243, 26]. We compile software into 64-bit x86 executable using their

default compilation settings. Supporting executables on other architectures is feasible,

because CACHEQL’s core technique is platform-independent.

Libjpeg & Prime+Probe. For the sake of presentation coherence, we focus on cryptosys-

tems under the in-house setting (i.e., collecting execution traces via Pin) in the evalua-

tion. Experiments of Libjpeg (including quantified leaks and localized vulnerabilities)

and Prime+Probe are in Sec. 6.8.5.

Data Preparing & Training. When collecting the data for training/analyzing, we fix the

public input and randomly sample keys to generate side-channel traces. For AES, we use

the Linux urandom utility to generate 40K 128-bit keys for estimating CP using their cor-

responding side channel traces (collected via Pin or Prime+Probe). We also generate 10K

extra keys and their side channel traces to de-bias non-determinism induced by ORAM

(Sec. 6.8.2). The same keys are used for benchmarking AES of all cryptosystems. For RSA,

we follow the same setting but generate 1024-bit private keys using OpenSSL. We have no

particular requirements for training data (e.g. achieving certain coverage) — we observe

that execution flows of cryptosystems are not largely altered by different keys, except that

key values may influence certain loop iterations (e.g., due to zero bits). We find that the

execution flows of cryptosystems are relatively more “regulated” than general-purpose

software, which is also noted previously [244]. If secrets could notably alter the execution

flow, it may indicate obvious issues like timing side channels, which should have been

primarily eliminated in modern cryptosystems.

Trace Logging. Pin is configured to log program memory access traces to detect cache side

channels due to SDA. We primarily consider cache side channels via cache lines and cache
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Table 6.2: Leaked bits of AES/AES-NI in OpenSSL/MbedTLS.

OpenSSL 3.0.0 OpenSSL 0.9.7 MbedTLS 3.0.0 MbedTLS 2.15.0
SCB 0 0 0 0
SDA 128.0 128.0 0 0

banks: for an accessed memory address addr, we compute its cache line and bank index

as addr >> 6 and addr >> 2, respectively. We also consider SCB, where Pin logs all

control transfer destinations. Cache line/bank indexes are computed in the same way. We

clarify that cache bank conflicts are inapplicable in recent Intel CPUs; we use this model

for easier empirical comparison with prior works [244, 26, 243, 279, 278]. Trace statistics

are presented in Table 6.4.

Ground Truth. To clarify, CACHEQL does not require the ground truth of leaked bits.

Rather, as discussed in Sec. 6.4.3, CACHEQL is trained to distinguish traces produced when

the software is processing different secrets. The ground truth is a one-bit variable denoting

whether trace o is generated when the software processing secret k.

Non-Determinism. We quantify the leaks when enabling RSA blinding (Sec. 6.8.2). We

also evaluate PathOHeap [225], a popular ORAM protocol, and consider real attack logs.

6.8.2 RQ1: Quantifying Side Channel Leakage

We report quantitative results over Pin-logged traces. Table 6.2 and Fig. 6.6 summarize

the quantitative leakage results computed by CACHEQL regarding different software,

where a large amount of secrets are leaked across all settings. We discuss each case in

the rest of this section. Quantitative analyses of Libjpeg and Prime+Probe are presented

in Sec. 6.8.5.

AES

The side channels of AES collected from the in-house settings are deterministic. The SDA

of AES standard T-table version can leak all key bits, but this implementation has no

SCB [26, 244]. These facts serve as the ground truth for verifying CACHEQL’s quantifi-

cation and localization. MbedTLS by default uses AES-NI, which has no SDA/SCB. As

shown in Table 6.2, CACHEQL reports no leak in it.
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Figure 6.6: Leaked bits of RSA in different settings. Blinding for Libgcrypt 1.6.1 refers
to RSA optimized with CRT (see Sec. 6.8.2). For cache line side channels (L in the last
row of legend), we present detailed breakdown: enabling (3 in the 4th row of legend) vs.
disabling (7 in the 4th row of legend) blinding, and with (3 in the 2nd row) vs. w/o (7 in
the 2nd row) considering Pre-processing.

CACHEQL reports 128 bits SDA leakage in AES-128 of OpenSSL whereas the SCB leak-

age in this implementation is zero. This shows that the quantification of CACHEQL is

precise. We distribute the leaked bits to program points via Shapley value. All 128 bits are

apportioned evenly toward 16 memory accesses in function _x86_64_AES_encrypt_-

compact. Manually, we find that these 16 memory accesses are all key-dependent table

lookups.
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Test Secure Implementations

CACHEQL also examines secure cryptographic implementations with no leakage. For

these cases, the quantification derived from CACHEQL can also be seen as their correct-

ness assessments. Given that said, as a dynamic method, CACHEQL is for bug detection,

not for verification.

ORAM. PathOHeap yields non-deterministic side channels, by randomly inserting dummy

memory accesses to produce highly lengthy traces. Since it takes several hours to process

one logged trace of RSA, we apply PathOHeap on AES from OpenSSL 3.0.0. Overall,

PathOHeap delivers provable mitigation: memory access traces, after being processed by

PathOHeap, should not depend on secrets. CACHEQL reports consistent and accurate

findings to empirically verify PathOHeap, as the leaked bit is quantified as zero.

Constant-Time Implementations. 13 constant-time utilities [10] from Binsec/Rel [66] are

evaluated using CACHEQL. Side channel traces from these utilities are deterministic,

whose quantified leaks are also zero. These results empirically show the correctness of

CACHEQL’s quantification.

RSA

RSA blinding is enabled by default in production cryptosystems. We quantify the in-

formation leakage of RSA with/without blinding, such that the logged traces are non-

deterministic when blinding is on. As noted in Sec. 6.3 ( {k7 ), prior works mainly focus on

the decryption fragment of RSA due to limited scalability [244, 74, 243, 26, 37]. As will be

shown, this tradeoff neglects many vulnerabilities, primarily in the pre-processing mod-

ules of cryptographic libraries, e.g., key parsing and BIGNUM initialization.9 CACHEQL

efficiently analyzes the whole trace, covering Pre-processing and Decryption (see Fig. 6.6).

As an ablation, CACHEQL also analyzes only Decryption, e.g., the green bar in Fig. 6.6.

Setup. Libgcrypt 1.9.4 uses blinding on both ciphertext and private keys. We enable/dis-

able them together. Libgcrypt 1.6.1 lacks blinding but implements the standard RSA and

another version using Chinese Remainder Theorem (CRT). Libgcrypt 1.9.4 uses blinding

9For simplicity, we refer to the pre-processing functions of cryptographic libraries as Pre-processing,
whereas the following decryption functions as Decryption.
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in the CRT version and disables blinding in the standard one. We evaluate these two RSA

versions in Libgcrypt 1.6.1. MbedTLS does not allow disabling blinding.

Results Overview. Fig. 6.6 shows the quantitative results. Since cache bank only dis-

cards two least significant bits of the memory addresses, it leaks more information than

using cache line which discards six bits. Blinding in modern cryptosystems notably re-

duces leakage: blinding influences secret-dependent memory accesses, introducing non-

determinism to prevent attackers from inferring secrets. Leakage varies across different

software and variants of the same software. Secrets are leaked via SCB and SDA to vary-

ing degrees. If blinding is disabled, the total leak bits when considering only Decryption

are close to the whole pipeline’s leakage. This is reasonable as they leak information from

the same source. With blinding enabled, leakage in Decryption is inhibited, and Pre-

processing contributes the most leakage. Though blinding minimizes leakage in Decryp-

tion, Pre-processing remains highly vulnerable, and it is generally overlooked previously.

OpenSSL. OpenSSL 3.0.0 has higher SCB leakage in Pre-processing with blinding en-

abled. As will be discussed in Sec. 6.8.3, this leakage is primarily introduced by BN_-

bin2bn and bn_expand2 functions, which convert key from string into BIGNUM. The

issue persists with OpenSSL 0.9.7. Moreover, compared with ver. 3.0.0, OpenSSL 0.9.7

has more SDA (but less SCB) leakage with blinding enabled. These gaps are also pri-

marily caused by the BN_bin2bn function in Pre-processing. We find that OpenSSL 3.0.0

skips leading zeros when converting key from string into BIGNUM, which introduces ex-

tra SCB leakage. In contrast, OpenSSL 0.9.7 first converts the key with leading zeros into

BIGNUM and then uses bn_fix_top to remove those leading zeros, causing extra SDA

leakage. Also, if blinding is disabled, OpenSSL 0.9.7 leaks approximately twice as many

bits as OpenSSL 3.0.0. According to the localization results of CACHEQL, OpenSSL 0.9.7

has memory accesses and branch conditions that directly depend on keys, which are vul-

nerable and lead to over 800 bits of leakage. We manually check OpenSSL 3.0.0 and find

that most of those vulnerable functions have been re-implemented in a constant-time way.

MbedTLS. CACHEQL finds many SDA in MbedTLS 3.0.0, which primarily occurs in the

mbedtls_mpi_read_binary and mbedtls_mpi_copy functions during Pre-processing.

The problem is not severe in ver. 2.15.0. We manually compare the two versions’ Pre-

processing and find that the CRT initialization routines differ. In short, MbedTLS 3.0.0
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avoids computing DP, DQ and QP (parts of the RSA private key in CRT) and instead

reads them from the PKCS1 structure, and therefore, mbedtls_mpi_copy function is

called for several times. The 2.15.0 version calculates DP, DQ and QP from the private key

via BIGNUM involved functions (e.g., mbedtls_mpi_mul_mpi). The mbedtls_mpi_-

copy function leaks information via SDA and SCB, whereas the BIGNUM computation in

the 2.15.0 version mainly leaks via SCB. This difference also explains why both versions

have many SCB, which are dominated by their Pre-processing.

Libgcrypt. Libcrypt 1.9.4 has most SCB leakage in Pre-processing with blinding enabled.

Nearly all leaked bits are from the do_vsexp_sscan function, which parses the key

from s-expression. Decryption only leaks negligible bits. Manual studies show that in

Libgcrypt 1.9.4, most BIGNUM-involved functions in Decryption are constant time and

safe. Nevertheless, CACHEQL identifies leaks in do_vsexp_sscan. This illustrates that

CACHEQL comprehensively analyzes production cryptosystems, whereas developers ne-

glect patching all sensitive functions in a constant-time manner, enabling subtle leakages.

Also, both versions have SDA leakage primarily in the _gcry_mpi_powm function; this

is also noted in prior works [244, 243, 37]. As aforementioned, Libgcrypt 1.9.4 uses the

standard RSA without CRT when blinding is disabled. The 1.6.1 version does not offer

blinding for both the standard RSA and the CRT version. It’s obvious that the standard

version leaks more than the CRT version.

Correctness. It is challenging to obtain ground truth in our evaluation. Aside from the

AES cases and secure implementations in Sec. 6.8.2 who have the “ground truth” (either

leaking 128 bits or zero bits) to compare with, there are several cases in RSA whose leaked

bits can be calculated manually, facilitating to assess the correctness of CACHEQL’s quan-

tification.

Case1: BN_num_bits_word function in OpenSSL 0.9.7, which is first identified by CacheD

[244] and currently fixed in OpenSSL 3.0.0, has 256 different entries depending on secrets.

It leaks � log 1
256 = 8.0 bits, in case entries are accessed evenly (which should be true since

key bits are generated independently and uniformly). CACHEQL reports the leakage as

7.4 bits, denoting a close quantification.

Case2: do_vsexp_sscan function (see Fig. 6.7) in both versions of Libgcrypt has control

branches depending on whether a secret is greater than 10. The SCB at L2 of Fig. 6.7, in
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Table 6.3: Representative vulnerable func. and their categories.

OpenSSL 3.0.0 Type MbedTLS 3.0.0 Type Libgcrypt 1.9.4 Type

bn_expand2
{k
A , {k

B , mbedtls_mpi
_copy

{k
A , {k

B ,
mul_n_basecase

{k
B , {k

C ,{k
C

{k
C

{k
D

BN_bin2bn {k
A , {k

C

mbedtls_mpi
_read_binary

{k
A , {k

C do_vsexp_sscan {k
A , {k

D

BN_mod_exp
_mont

{k
B , {k

C
mpi_montmul

{k
B , {k

C ,
_gcry_mpih_mul

{k
B , {k

C ,{k
D , {k

E
{k
D

{k
D , {k

E

theory, leaks � log 1
16 + log 1

10 = 0.68 bits of information, as the possible key values are

reduced from 16 to 10 when L2 is executed. Similarly, the SCB at L4 leaks � log 1
16 + log 1

6

= 1.42 bits. When CACHEQL analyzes one trace, it apportions around 1 bit to each of the

two records corresponding to the SCB at L2 and L4. We interpret that CACHEQL provides

accurate quantification and apportionment for this case.

Answer to RQ1: By quantifying leakage with CACHEQL, we find that information
leaks are prevalent in cryptosystems, even when hardening methods (e.g., blinding) are
enabled. Most leaks reside in the pre-processing stage neglected by existing research.
For some cases, the development of cryptosystems may increase the amount of leakage.
The correctness of CACHEQL is empirically validated using a total of 24 instances of
known bit leakages.

6.8.3 RQ2: Localizing Leakage Sites

This section reports the leakage program points localized in RSA by CACHEQL using

Shapley value. We report representative functions in Table 6.3. See [6] for detailed reports.

When blinding is enabled, CACHEQL localizes all previously-found leak sites and

hundreds of new ones.

Clarification. Some leak sites localized by CACHEQL are dependent, e.g., several mem-

ory accesses within a loop where only the loop condition depends on secrets. To clar-

ify, CACHEQL does not distinguish dependent/independent leak sites, because from the

game theory perspective, those dependent leak sites (i.e., players) collaboratively con-

tribute to the leakage (i.e., the game). Also, reporting all dependent/independent leak

sites may be likely more desirable, as it paints the complete picture of the software attack

surface. Overall, identifying independent leak sites is challenging, and to our best knowl-

edge, prior works also do not consider this. This would be an interesting future work to

169



explore. On the other hand, vulnerabilities identified by CACHEQL are from hundreds of

functions that are not reported by prior works, showing that the localized vulnerabilities

spread across the entire codebase, whose fixing may take considerable effort.

Categorization of Vulnerabilities

We list all identified vulnerabilities in [6]. Nevertheless, given the large number of (newly)

identified vulnerabilities, it is obviously infeasible to analyze each case in this chapter. To

ease the comparison with existing tools that feature localization, we categorize leak sites

from different aspects. We first categorize the leak sites according to their locations in

the codebase ( {k
A and {k

B ). We then use {k
D and {k

E to describe how secrets are propagated.

Moreover, since leaking-leading-zeros is less considered by previous work, we specifically

present such cases in {k
C .

{k
A Leaking secrets in Pre-processing: Leak sites belonging to {k

A occur when program

parses the key and initializes relevant data structures like BIGNUM. Note that this stage is

rarely assessed by previous static (trace-based) tools due to limited scalability; empirical

results are given in Table 6.5.

{k
B Leaking secrets in Decryption: While {k

B is primarily analyzed by prior static tools, in

practice, they have to trade precision for speed, omitting analysis of full implicit informa-

tion flow ( {k8 in Table 6.1). Therefore, their findings related to {k
B compose only a small sub-

set of CACHEQL’s findings. Also, prior dynamic tools, including DATA and MicroWalk,

are less capable of detecting {k
B . This is because blinding is applied at Decryption ( {k2 in

Table 6.1). DATA likely neglects leak sites when blinding is enabled since it merely differ-

entiates logged side channel traces with key fixed/varied. MicroWalk incorrectly regards

data accesses/control branches influenced by blinding as vulnerable. Blinding can intro-

duce a great number of records (see Table 6.4 for increased trace length), and MicroWalk

fails to correctly analyze all these cases.

{k
C Leaking leading zeros: Besides CACHEQL, findings belonging to {k

C were only par-

tially reported by DATA. Particularly, given DATA is less applicable when facing blinding

(noted in Sec. 6.3), it finds {k
C only in Pre-processing, where blinding is not enabled yet.

Since CACHEQL can precisely quantify ( {k4 in Table 6.1) and apportion ( {k5 ) leaked bits,
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it is capable of identifying {k
C in Decryption; the same reason also holds for {k

B . At this

step, we manually inspected prior static tools and found they only “taint” the content of

a BIGNUM, which is an array, if BIGNUM stores secrets. The number of leading zeros,

which has enabled exploitations (CVE-2018-0734 and CVE-2018-0735 [252]) and is typi-

cally stored in a separate variable (e.g., top in OpenSSL), is neglected.

{k
D Leaking secrets via explicit information flow: Most findings belonging to {k

D have been

reported by existing static tools. CACHEQL re-discovers all of them despite it’s dynamic.

We attribute the success to CACHEQL’s precise quantification, which recasts MI as CP

(Sec. 6.4.3), and localization, where leaks are re-formulated as a cooperative game (Sec. 6.6).

{k
E Leaking secrets via implicit information flow: As discussed above, prior static tools are

incapable of fully detecting {k
E . Also, many findings of CACHEQL in {k

E overlap with that

in {k
B . Since DATA cannot handle blinding well (blinding is extensively used in Decryp-

tion), only a small portion of {k
E were correctly identified by DATA. DATA also has the

same issue to neglect CACHEQL’s findings in {k
D .

In sum, static-/trace-based tools (CacheD, CacheS, Abacus) can detect {k
B \ {k

D but

cannot identify {k
A [ {k

C [ {k
E . As noted in Sec. 6.3, MicroWalk cannot properly differ ran-

domness induced by blinding vs. keys, and is inaccurate for the RSA case with blinding

enabled. DATA pinpoints {k
A (accordingly include {k

A \ {k
C ) and is less applicable for {k

B .

CACHEQL, due to its precise quantification, localization, and scalability, can identify {k
A [{k

B [ {k
C [ {k

D [ {k
E .

Characteristics of Leakage Sites

The leakage sites exist in all stages of cryptosystems. Below, we use case studies and the

distribution of leaked bits to illustrate their characteristics. In short, the leaks start when

parsing keys from files and initializing secret-related BIGNUM, and persist during the

whole life cycle of RSA execution.

Case Study1: Fig. 6.7 presents a case newly disclosed by CACHEQL, which is the key

parsing implemented in Libgcrypt 1.6.1 and 1.9.4. As discussed in Sec. 6.8.2 (see Case2),

this function has SCB explicitly depending on the key read from files. It therefore contains{k
A and {k

D . Similar leaks exist in other software. For instance, as localized by CACHEQL
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int hextonibble(char s) {
if(s >= '0' && s <= '9’)
return s - '0’;

if(s >= 'A' && s <= 'F’)
return 10 + s - 'A’;

if(s >= 'a' && s <= 'f’)
return 10 + s - 'a’;

}

1
2
3
4
5
6
7
8

static gpg_err_code_t
do_vsexp_sscan(gcry_sexp_t *ret,

char *buf, size_t len) {
struct make_space_ctx c;
for(char *s=buf; len; len--) {
*c.p++ = hextonibble(*(s++));

} 
}

9
10
11
12
13
14
15
16

Figure 6.7: Simplified vulnerable program points localized in Libgcrypt 1.9.4. This func-
tion has SCB directly depending on bits of the key.

and DATA, the EVP_DecodeUpdate function in two versions of OpenSSL have SDA via

the lookup table data_ascii2bin when decoding keys read from files.

Case Study2: Fig. 6.8 depicts the life-cycle of BIGNUM in OpenSSL 3.0.0, including initial-

ization and computations. We show how secrets are leaked along the usage of BIGNUM.

1 BN_bin2bn@L39: A BIGNUM is initialized using s at L40, which is parsed from the

key file in the .pem format. A for loop at L42 skips leading zeros, propagating s to len

via implicit information flow. Then, len is propagated to top (L49 or L53). Thus, future

usage of top clearly leaks secret.

2 BN_mod_exp_mont@L1: BN_num_bits is called to calculate #bits (after excluding

leading zeros) of BIGNUM p. BN_num_bits further calls BN_num_bits_word which

we have discussed in Sec. 6.8.2. #bits is stored in bits at L5. Later, bits is propagated

to wstart at L7.

3 BN_window_bits_for_exponent_size@L20: w is propagated from bits at L6,

given control branches from L21 to L24 directly depend on b.

4 BN_is_bit_set@L33: top of BIGNUM p directly decides the return value at L36.

Its content, namely array d, also sets the return value at L37. Given wvalue and wend

at L13 and L15 are updated according to the return value of BN_is_bit_set, they are

thus implicitly propagated.

5 bn_mul_mont_fixed_top@L26: The access to array val at L17 is indexed with

wvalue, and therefore, it induces SDA. Variable b at L27 is also propagated via wvalue,

and the if branch at L28 thus introduces SCB.
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#define BN_window_bits_for_exponent_size(b)\
((b) > 671 ? 6 : \
(b) > 239 ? 5 : \
(b) >  79 ? 4 : \
(b) >  23 ? 3 : 1)

int bn_mul_mont_fixed_top(BIGNUM *r,
BIGNUM *a, BIGNUM *b) {   

if(a == b) 
bn_sqr_fixed_top(tmp, a)

else
bn_mul_fixed_top(tmp, a, b)

}
int BN_is_bit_set(BIGNUM *a, int n) {
int i = n / BN_BITS2;
int j = n % BN_BITS2;
if(a->top <= i) return 0;
return (int)(((a->d[i]) >> j) & 1;

}

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

BIGNUM *BN_bin2bn(int len, 
char *s, BIGNUM *ret) {
// s is secret
for ( ; len && *s == 0; s++) {
// skip leading zeros
len --;

}

n = len; 
if (n == 0) { 
ret->top = 0; 
return ret; 

} 
i = ((n - 1) / BN_BYTES) + 1;
ret->top = i; 
/* top is the “size” of a
BIGNUM in later computing */
return ret;

}

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

int BN_mod_exp_mont(BIGNUM *rr, BIGNUM *a,
BIGNUM *p, BIGNUM *m, ) {

// table of variables obtained from 'ctx’
BIGNUM *val[TABLE_SIZE];
int bits = BN_num_bits(p);
int w = BN_window_bits_for_exponent_size(bits);
int wstart = bits – 1;
for(;;) {
int wvalue = 1;
int wend = 0;
for(int i = 1; i < w; i++)
if(BN_is_bit_set(p, wstart - i)) {
wvalue <<= (i - wend);
wvalue |= 1;
wend = i;

}
bn_mul_mont_fixed_top(r, r, val[wvalue >> 1]);

}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

implicit information flow
“taints” wvalue and wend

len is tainted via implicit
information flow here.

Figure 6.8: Vulnerable program points localized in OpenSSL 3.0.0. We mark the line num-
bers of SDA vulnerabilities and SCB vulnerabilities found by CACHEQL. Secrets are prop-
agated from p to other variables via explicit or implicit information flow, which confirm
each SDA/SCB vulnerability found by CACHEQL.

Overall, 1 executes at Pre-processing and is only detected by DATA and CACHEQL.

It has both explicit (L47) and implicit (L42) information flow. Thus, it has {k
A

{k
C

{k
D

{k
E .

Similarly, 2 contains {k
B

{k
C

{k
D

{k
E . Both 3 and 4 have {k

B
{k
C

{k
D . 5 only has {k

B
{k
D . Among

the leak sites discussed above, only five SCB at L21-L24 and L36 are detected by previous

static tools; remaining ones are newly reported by CACHEQL.

Case Study3: Fig. 6.9 shows leaking sites disclosed by CACHEQL in MbedTLS 3.0.0. In
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int mbedtls_mpi_div_mpi(Q, R, A, B) {
// Q, R, A, B are mbedtls_mpi*
mbedtls_mpi_copy(&X, A)；
mbedtls_mpi_copy(&Y, B)；
int n = X.n - 1;
int t = Y.n - 1;
while(mbedtls_mpi_cmp_mpi(&X, &Y)) {
Z.p[n - t]++; // local variable Z
mbedtls_mpi_sub_mpi(&X, &X, &Y);

}
}
int mbedtls_mpi_copy(mbedtls_mpi *X,

mbedtls_mpi *Y) {
for(size_t i = Y->n-1; i > 0; i--)
if(Y->p[i] != 0) break;

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

int mbedtls_mpi_cmp_mpi(X, Y) {
// X and Y are mbedtls_mpi*
for(i = X->n; i > 0; i--)
if(X->p[i - 1] != 0)
break;

for(j = Y->n; j > 0; j--)
if(Y->p[j - 1] != 0)
break;

for( ; i > 0; i-- ) {
if(X->p[i-1] > Y->p[i-1])
return(X->s);

if(X->p[i-1] < Y->p[i-1])
return(-X->s);

}
}

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

both SDA and SCB here.

Figure 6.9: Vulnerable program points localized in MbedTLS 3.0.0. We mark the line num-
bers of SDA and SCB.

short, MbedTLS has similar implementation of BIGNUM with OpenSSL, where the vari-

able n in BIGNUM stores the number of leading zeros. Later computations rely on n for

optimization, for instance, the SDA at L8 in mbedtls_mpi_div_mpi@L1. It’s worth

noting that mbedtls_mpi_copy@L12 is extensively called within the life cycles of all

involved BIGNUM, contributing to notable leaks in the whole pipeline. Similar leaks also

exist in MbedTLS 2.15.0. See our website [6] for more details.

Distribution. Fig. 6.10 reports the distribution of leaked bits among top-10 vulnerable

functions localized in MbedTLS. The two versions of MbedTLS primarily leak bits in Pre-

processing and have different strategies when initializing BIGNUMs for CRT optimiza-

tion. Thus, the distributions of most vulnerable functions vary. For instance, the most

vulnerable functions in ver. 2.15.0 are for multiplication and division; they are involved

in calculating BIGNUMs for CRT. Notably, mbedtls_mpi_copy is among the top-5 vul-

nerable functions on all four charts in Fig. 6.10. This function leaks the leading zeros of the

input BIGNUMs via both SDA and SCB. The mbedtls_mpi_copy function, as a mem-

ory copy routine function, is frequently called (e.g., more than 1,000 times in ver. 2.15.0).

Though this function only leaks the leading zeros, given that its input can be the private

key or key-dependent intermediate value, the accumulated leakage is substantial.
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(c) SDA of MbedTLS 2.15.0 (d) SCB of MbedTLS 2.15.0

(a) SDA of MbedTLS 3.0.0 (b) SCB of MbedTLS 3.0.0

Figure 6.10: Distribution of top-10 functions in MbedTLS leaking most bits via either SDA
or SCB vulnerabilities. Legend are in descending order.

Answer to RQ2: CACHEQL confirms all known flaws and identifies many new leakage
sites, which span over the life cycle of cryptographic algorithms and exhibit diverse pat-
terns. Distributions of leaked bits among vulnerable functions varies notably between
software versions.

6.8.4 RQ3: Performance Comparison

To assess CACHEQL’s optimizations and re-formulations, we compare CACHEQL with

previous tools on the speed, scalability, and capability of quantification and localization.

Trace Statistics. We report the lengths (after padding) of traces collected using Pin in Ta-

ble 6.4. In short, all traces collected from real-world cryptosystems are lengthy, impos-

ing high challenge for analysis. Nevertheless, CACHEQL employs encoding module S

and compressing module R to effectively process lengthy and sparse traces, as noted in

Sec. 6.5.

Impact of Re-Formulations/Optimizations. CACHEQL casts MI as CP when quantifying
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Table 6.4: Padded length of side channel traces collected using Intel Pin. The above/below
five rows are for SDA/SCB.

Pre-processing - Pre-processing -
Decryption Decryption Decryption Decryption

Blinding Blinding - -
OpenSSL 3.0.0 256⇥ 256⇥ 64 256⇥ 256⇥ 15 256⇥ 256⇥ 40 256⇥ 256⇥ 9
OpenSSL 0.9.7 256⇥ 256⇥ 20 256⇥ 256⇥ 14 256⇥ 256⇥ 14 256⇥ 256⇥ 13
MbedTLS 3.0.0 256⇥ 256⇥ 16 256⇥ 256⇥ 2 N/A N/A

MbedTLS 2.15.0 256⇥ 256⇥ 14 256⇥ 256⇥ 2 N/A N/A
Libgcrypt 1.9.4 256⇥ 256⇥ 36 256⇥ 256⇥ 22 256⇥ 256⇥ 26 256⇥ 256⇥ 25
Libgcrypt 1.6.1 256⇥ 256⇥ 5 128⇥ 128⇥ 19 256⇥ 256⇥ 11 256⇥ 256⇥ 10
OpenSSL 3.0.0 256⇥ 256⇥ 40 256⇥ 256⇥ 10 256⇥ 256⇥ 24 256⇥ 256⇥ 4
OpenSSL 0.9.7 256⇥ 256⇥ 8 256⇥ 256⇥ 5 256⇥ 256⇥ 5 256⇥ 256⇥ 4
MbedTLS 3.0.0 256⇥ 256⇥ 6 256⇥ 256⇥ 1 N/A N/A

MbedTLS 2.15.0 256⇥ 256⇥ 6 256⇥ 256⇥ 1 N//A N/A
Libgcrypt 1.9.4 256⇥ 256⇥ 12 256⇥ 256⇥ 8 256⇥ 256⇥ 10 256⇥ 256⇥ 9
Libgcrypt 1.6.1 256⇥ 256⇥ 3 128⇥ 128⇥ 8 256⇥ 256⇥ 6 256⇥ 256⇥ 5

Table 6.5: Scalability comparison of static- or trace-based tools.

CacheD Abacus CacheS CacheAudit
Technique symbolic execution abstract interpretation
Libgcrypt fail (> 48h) fail (> 48h) fail fail

Libjpeg fail fail fail fail

the leaks. This re-formulation is faster (see comparison below) and more precise, because

calculating MI via MP (as done in MicroWalk) cannot distinguish blinding in traces. As

reported in Table 6.4, a great number of records are related to blinding, and they lead to

false positives of MicroWalk. For localization, the unoptimized Shapley value has O(2N)

computing cost. Given the trace length N is often extremely large (Table 6.4), computing

Shapley value is infeasible. With our domain-specific optimizations, the cost is reduced

as nearly constant.

Time Cost and Scalability

Scalability Issue of Static-/Trace-Based Tools. As noted in {k7 in Sec. 6.3, prior static- or

trace-based analyses rely on expensive and less scalable techniques. They, by default, pri-

marily analyze a program/trace cut and neglect those pre-processing functions in crypto-

graphic libraries. To faithfully assess their capabilities, we configure them to analyze the

entire trace/software (which needs some tweaks on their codebase). We benchmark them
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Table 6.6: Training time of 50 epochs for the RSA cases.

SDA SCB

Configuration
Pre. - Pre. - Pre. - Pre. -
Dec. Dec. Dec. Dec. Dec. Dec. Dec. Dec.

Blind. Blind. - - Blind. Blind. - -
OpenSSL 3.0.0 22h 5h 3h 50min 13h 3h 2.5h 20min
OpenSSL 0.9.7 6.5h 5h 1h 1h 2.5h 1.5h 25min 20min
MbedTLS 3.0.0 5h 40min N/A N/A 2.5h 20min N/A N/A

MbedTLS 2.15.0 5h 40min N/A N/A 2.5h 20min N/A N/A
Libgcrypt 1.9.4 12.5h 7.5h 1.5h 1.5h 4h 2.5h 50min 45min
Libgcrypt 1.6.1 1.5h 1.5h 55min 50min 1h 40min 30min 25min

1. Due to the limited space, we use Pre., Dec., and Blind. to denote
Pre-processing, Decryption, and Blinding, respectively.
2. Blind. has ⇥4 training samples.

on Libjpeg and RSA of Libgcrypt 1.9.4. Abacus/CacheD/CacheS/CacheAudit can only

analyze 32-bit x86 executable. We thus compile 32-bit Libgcrypt and Libjpeg. Results are

in Table 6.5. CacheS and CacheAudit throw exceptions of unhandled x86 instruction. Both

tools, using rigorous albeit expensive abstraction interpretation, appear to handle a subset

of x86 instructions. Fixing each unhandled instruction would presumably require defin-

ing a new abstract operator [64], which is challenging on our end. Abacus and CacheD

can be configured to analyze the full trace of Libgcrypt. Nevertheless, both of them fail (in

front of unhandled x86 instructions) after about 48h of processing. In contrast, CACHEQL

takes less than 17h to finish the training and analysis of the Libcrypt case; see Table 6.6.

Training/Analyzing Time of CACHEQL. Table 6.6 presents the RSA case training time,

which is calculated over 50 epochs (the maximal epochs required) on one Nvidia GeForce

RTX 2080 GPU. In practice, most cases can finish in less than 50 epochs. For AES-128,

training 50 epochs takes about 2 mins. Training 50 epochs for Libjpeg/PathOHeap takes

2-3 hours. As discussed in Sec. 6.4.3, since we transform computing MI as estimating CP,

CACHEQL only needs to be trained (for estimating CP) once. Once trained, it can analyze

256 traces in 1-2 seconds on one Nvidia GeForce RTX 2080 GPU, and less than 20 seconds

on Intel Xeon CPU E5-2683 of 4 cores.

In sum, CACHEQL is much faster than existing trace-based/static tools. By using

CP, it principally reduces computing cost comparing with conventional dynamic tools

(see Sec. 6.4). We also note that it is hard to make a fully fair comparison: training

CACHEQL can use GPU while existing tools only support to use CPUs. Though CACHEQL
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has smaller time cost on the GPU (Nvidia 2080 is not very powerful), we do not claim

CACHEQL is faster than prior dynamic tools. In contrast, we only aim to justify that

CACHEQL is not as heavyweight as audiences may expect. Enabled by our theoretical

and implementation-wise optimizations, CACHEQL efficiently analyzes complex produc-

tion software.

Capability of Quantification and Localization

Small Programs and Trace cuts. As evaluated in Sec. 6.8.4, previous static-/trace-based

tools are incapable of analyzing the full side channel traces. Therefore, we compare them

with CACHEQL using small program (e.g., AES) and trace cuts.

Overall, the speed of CACHEQL (i.e., training + analyzing) still largely outperforms

static/trace-based methods. For instance, CacheD [244], a qualitative tool using sym-

bolic execution, takes about 3.2 hours to analyze only the decryption routine of RSA in

Libgcrypt 1.6.1 without considering blinding. CACHEQL takes under one hour for this

setting. In addition, Abacus [26], which performs quantitative analysis with symbolic ex-

ecution, requires 109 hours to process one trace of Libgcrypt 1.8. Note that it only analyzes

the decryption module (several caller/callee functions) without considering the blinding,

pre-rocessing functions, etc. In contrast, CACHEQL can finish the training within 2 hours

(the trace length of Libgcrypt 1.9 is about the same as ver. 1.8) in this setting. It’s worth

noting that, CACHEQL only needs to be trained for once, and it takes only several sec-

onds to analyze one trace. That is, when analyzing multiple traces, previous tools has fold

increase on the time cost whereas CACHEQL only adds several seconds.

The quantification/localization precision of CACHEQL is also much higher. Abacus

reports 413.6 bits of leakage for AES-128 (it neglects dependency among leakage sites,

such that the same secret bits can be repetitively counted at different leakage sites), which

is an overestimation since the key has only 128 bits. For RSA trace cuts, Abacus under-

quantifies the leaked bits because it misses many vulnerabilities due to implicit information-

flow. When localizing vulnerabilities in AES-128, we note that all static/trace-based have

correct results. For localization results of RSA trace cuts, see Sec. 6.8.3. In short, none of

the previous tools can identify all the categories of vulnerabilities.
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Dynamic Tools. Previous dynamic tools do not suffer from the scalability issue and have

comparable speed with CACHEQL. Nevertheless, they require re-launching their whole

pipeline (e.g., sampling + analyzing) for each trace.

For quantification, MicroWalk over-quantifies the leaked bits of RSA as 1024 when

blinding is enabled, since it regards random records as vulnerable. Similarly, it reports

that ORAM cases have all bits leaked despite they are indeed secure. MicroWalk can

correctly quantify the leaks of whole traces for AES cases and constant-time implementa-

tions, because no randomness exists. Nevertheless, since the same key bits are repeatedly

reused on the trace, its quantification results for single record, when summed up, are in-

correctly inconsistent with the result of whole trace. For localization, as summarized in

Sec. 6.8.3, previous dynamic tools are also either incapable of identifying all categories

of vulnerabilities or yields many false positive. For instance, MicroWalk can regards all

records related to blinding (over 1M in OpenSSL 3.0.0; see trace statistics in Table 6.4) as

“vulnerable”.

Answer to RQ3: With domain-specific transformations and optimizations applied,
CACHEQL addresses inherent challenges like non-determinism, and features fast, scal-
able, and precise quantification/localization. Evaluations show its advantage over pre-
vious tools.

6.8.5 RQ4: Extending CACHEQL for Other Side Channels and Software

Data Preparing. We choose the CelebA dataset [168] as the image inputs of Libjpeg. The

CelebA consists of 160,000 training and 10,000 validation images. We use the training

images and their corresponding side channel traces to estimate CP via Fq. The validation

images and their induced side channels are adopted for de-biasing (in case there exists

non-determinism).

Trace Logging. Following the same configuration of Sec. 6.8, we use Pin to log execution

traces of Libjpeg.

Logging via Prime+Probe. Besides using Pin, we collect cache set access traces (for

both cryptosystems and Libjpeg) via Prime+Probe [236], in userspace-only scenarios.

Following [278], we use Mastik [269], a micro-architectural side channel toolkit, to per-

form Prime+Probe and log victim’s access toward L1D and L1I cache. We use Linux
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Table 6.7: Leakage ratios (see Eq. 6.4) of Libjpeg without ! with considering generaliz-
ability.

SDA SCB
cache line 100%! 93% 100%! 49%

taskset to pin victim software and the spy process on the same CPU core. Scripts of

Prime+Probe experiments are at [9].

Libjpeg

Quantification. Libjpeg does not contain mitigations like blinding. Thus, side channels

collected by Pin are deterministic. Nevertheless, we argue that merely considering the

difference among SDA/SCB, which is a conventional setup for cryptosystems, will over-

estimate the leakage. The reasons are two-fold: 1) Traces can be largely divergent by tweak-

ing trivial pixels in the input images, e.g., background color pixels. 2) Even if all pixels are

equally sensitive, the leakage may be insufficient to recover input images. For instance,

attackers only infer whether each pixel value is larger than a threshold (as how keys are

usually recovered) and obtain a binary image — it’s still infeasible to recognize humans

in such images.

To handle these, we extend the generalizability consideration, which is proposed to han-

dle non-deterministic side channels derived from cryptosystems, to quantify deterministic

side channels made by Libjpeg. Therefore, our quantification is the same as for process-

ing non-deterministic side channels of cryptosystems. Due to the aforementioned issue,

we deem trivial pixels contain little information. As introduced in Sec. 6.4.4, CACHEQL

should accordingly report a zero leakage since these non-sensitive factors are not general-

izable.

Given that the #images is infinite, it’s infeasible to decide the value of p(F)/p(T) in

Eq. 6.3 which should be a constant. We thus report the leakage ratio for Libjpeg. As

shown in Table 6.7, leakage ratios reach 100% for SDA and SCB if we only consider the dis-

tinguishability, which indicates side channels can differ images. Nevertheless, the leakage

ratios are reduced to 93% for SDA and 49% for SCB when we faithfully take generalizability

into account.
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Table 6.8: Representative vulnerable functions localized in Libjpeg and their types.

Function Type
decode_mcu SDA, SCB

jsimd_ycc_extbgrx_convert_avx2 SDA
jsimd_idct_islow_avx2 SDA, SCB

Table 6.9: Leaks of side channels collected via Prime+Probe.

RSA D RSA D RSA D RSA D
#Repeating 1 2 4 8

Leakage 19.3 (1.8%) 29.4 (2.8%) 34.9 (3.4%) 35.5 (3.4%)
RSA D RSA I Libjpeg D Libjpeg I

#Repeating 16 8 8 8
Leakage 35.6 (3.4%) 21.6 (2.1%) 20.8% 12.9%

1. “D” denotes L1 D cache whereas “I” denotes L1 I cache.
2. We also report leakage ratios for RSA cases to ease comparison.

Localization. Representative vulnerable functions of Libjpeg are given in Table 6.8. The

leaked bits are spread across hundreds of program points, mostly from the IDCT, YCC en-

coding, and MCU modules. Libjpeg converts JPEG images into bitmaps, whose procedure

has many SDA and SCB. We manually checked our findings, which are aligned with [278].

Nevertheless, the YCC encoding-related functions are newly found by us. CACHEQL also

shows that SDA in IDCT leaks the most bits, whereas the MCU modules leak more bits

via SCB. [278] flags those issues without quantification.

Prime+Probe

Following previous setups [278], a common Prime+Probe is launched on the same core

with the victim software and periodically probes L1 cache when the victim software is

executed. This mimics a practical and powerful attacker and is also the default setup of

the Prime+Probe toolkit [269] leveraged in our evaluation and relevant research in this

field. To prepare traces about Pre-processing, we halt the victim program after the pre-

processing stage. Generally, launching Prime+Probe is costly. Without loss of generality,

we use Prime+Probe to collect RSA side channels from OpenSSL 0.9.7 and Libjpeg. At-

tackers often repeat launching Prime+Probe [284]. As in Table 6.9, repeating an attack to

collect more logs does improve information, but only marginal. Compared to merely do-

ing Prime+Probe once, repeating⇥4 yields more information. However, repeating more

times does not necessarily improve, since the information source is always the same. We
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also note that Pre-processing has more leaks: for two (RSA, #Repeating=8) cases of L1 D

and I cache (i.e., the 2nd and 3rd columns in the last row), Pre-processing has 22.5 (total

35.5) and 14.1 (total 21.6) leaked bits.

Libjpeg leaks more information than RSA. Not like recovering keys where each key

bit needs to be analyzed, recovering every pixel is not necessary for inferring images. As

previously stated [278], pixels conform to specific constraints to form meaningful contents

(e.g., a human face), which typically have lower dimensions than pixel values. As a result,

extracting these constraints can give rich information already.

Answer to RQ4: CACHEQL is highly generic: extending CACHEQL for other software
and forms of side channels is straightforward and has no technical hurdles.

6.9 Discussion

Handling Real-World Attack Logs. Side channel observations (e.g., obtained in cross-

virtual machine attacks [284]), are typically noisy. CACHEQL handles real attack logs by

considering noise as non-determinism (see Sec. 6.4.4), thus quantifying leaked bits in those

logs. Nevertheless, we do not recommend localizing vulnerabilities using real attack logs,

since mapping these records back to program statements are challenging. Pin is sufficient

for developers to “debug”.

Analyzing Media Data. CACHEQL can smoothly quantify and localize information leaks

for media software. Unlike previous static-/trace-based tools, which require re-implementing

the pipeline to model floating-point instructions for symbolic execution or abstract inter-

pretation, CACHEQL only needs the compressor R to be changed. In addition, CACHEQL

is based on NN, which facilitates extracting “contents” of media data to quantify leaks,

rather than simply comparing data byte differences.

Program Taking Public Inputs. We deem that different public inputs should not largely

influence our analysis over cryptographic and media libraries, whose reasons are two-

fold. First, for cryptosystems like OpenSSL, the public inputs (i.e., plaintext or cipher-

text) has a relatively minor impact on the program execution flow. To our observation,

public input values only influence a few loop iterations and if conditions. Media li-
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braries mainly process private user inputs, which has no “public inputs”. In practice,

the influences of public inputs (including other non-secret local variables) are treated as

non-determinism by CACHEQL. That is, they are handled consistently as how CACHEQL

handles cryptographic blinding (Sec. 6.4.4), because neither is related to secret.

Given that said, configurations (e.g., cryptographic algorithm or image compression

mode) may notably change the execution and the logged execution traces. We view that

as an orthogonal factor. Moreover, modes of cryptographic algorithms and media pro-

cessing procedures are limited. Users of CACHEQL are suggested to fix the mode before

launching an analysis with CACHEQL, then use another mode, and so on.

Keystroke Templating Attacks. Quantifying and localizing the information leaks that en-

able keystroke templating attacks should be feasible to explore. With side channel traces

logged by Intel Pin, machine learning is used to predict the user’s key press [241]. Given

sufficient data logged in this scenario, CACHEQL can be directly applied to quantify the

leaked information and localize leakage sites.

Large Software Monoliths. For analyzing complex software like browsers and office prod-

ucts, our experience is that using Intel Pin to perform dynamic instrumentation for pro-

duction browsers is difficult. With this regard, we anticipate adopting other dynamic

instrumentors, if possible, to enable localizing leaks in these software. With correctly

logged execution trace, CACHEQL can quantify the leaked bits and attribute the bits to

side channel records.

Training Dataset Generalization. One may question to what degree traces obtained from

one program can be used as training set for detecting leaks in another. In our current

setup, we do not advocate such a “transfer” setting. Holistically, CACHEQL learns to

compute PD by accurately distinguishing traces produced when the software is process-

ing different secret inputs. By learning such distinguishability, CACHEQL eliminates the

need for users to label the leakage bits of each training data sample. Nevertheless, knowl-

edge learned for distinguishability may differ between programs. It is intriguing to ex-

plore training a “general” model that can quantify different side channel logs, particularly

when collecting traces for the target program is costly. To do so, we expect to incorporate

advanced training techniques (such as transfer learning [197]) into our pipeline.
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Key Generation. In RSA evaluations, we feed cryptographic libraries with the key in a file.

That is, the cryptographic library execution does not involve “key generation”, which is

not due to “limited coverage” of CACHEQL. Previous works [181] have exploited RSA

key generation. With manual effort, we find that the key generation functions heavily

use BIGNUM, involving vulnerable BIGNUM initialization and computation functions

already localized by CACHEQL in Sec. 6.8.3, e.g., BN_bin2bn in Fig. 6.8 and BN_sub (see

our full report [6]).

BIGNUM Implementation. We also investigate other cryptosystems. LibreSSL and Bor-

ingSSL are built on OpenSSL. Their BIGNUM implementations and OpenSSL share simi-

lar vulnerable coding patterns (i.e., the leading zero leak patterns; see {k
C of Sec. 6.8.3). We

also find similar BIGNUM vulnerable patterns in Botan (see [1]). In contrast, we find Intel

IPP does not use an individual variable to record #leading zeros in BIGNUM (see [2]),

hence it is likely free of {k
C .

Extension for Other Side Channels. While this chapter focuses on cache side channels

to present aligned comparisons with previous works, extending CACHEQL for other side

channels should incur no technical challenges: users only need to feed the collected side

channels and corresponding secrets to CACHEQL without any modification to CACHEQL.

As shown in Sec. 6.5, CACHEQL’s design is agnostic to side channel types and how side

channel is collected. In Sec. 6.8, we also evaluate CACHEQL with various forms of cache

side channels, including cache line and cache bank accesses collected in an in-house set-

ting via Intel Pin, and noisy cache set observations recorded using Prime+Probe; all the ex-

periments directly feed the side channels into CACHEQL without additional effort. Over-

all, we foresee the high potential of CACHEQL’s applications to other side channels.

6.10 Conclusion

We present CACHEQL to quantify cache side channel leakages via MI. We also formulate

secret leak as a cooperative game and enable localization via Shapley value. Our evalua-

tion shows that CACHEQL overcomes typical hurdles (e.g., scalability, accuracy) of prior

works, and computes information leaks in real-world cryptographic and media software.
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6.11 Appendix for Chap. 6

6.11.1 Proof for Correctness of CACHEQL’s quantification

This Appendix section proves Eq. 6.10 in a two-step approach; we refer the following

proof skeleton to [30, 238]. Since c(k, o) is only decided by Fq, for simplicity, we also de-

note it as a parameterized function. In particular, Lemma 1 first shows that the empirically

measured Î(n)
q† (K; O) is consistent with Îq†(K; O). Lemma 2 then proves that Îq†(K; O) stays

close to I(K; O). In all, Tsai et al. [238] has pointed out that the following two prepositions

hold for neural networks:

Proposition 1 (Boundness). 8ĉq and 8k, o, there exist two constant bounds Bl and Bu such that

Bl  log ĉq(k, o)  Bu.

Proposition 2 (log-smoothness). 8k, o and 8q1, q2 2 Q, 9a > 0 such that | log ĉq1(k, o) �

log ĉq2(k, o)|  akq1 � q2k.

Proposition 1 states that outputs of a neural network are bounded and Proposition 2

clarifies that the output of a neural network will not change too much if the parameter

q change slightly [238]. By incorporating the bounded rate of uniform convergence on

parameterized functions [27], we have:

Lemma 1 (Estimation). 8e > 0,

Pr
{hk,oi}(n)

 
sup
ĉ

q†2C

��� Î(n)
q† (K; O)�EPK⇥O [log ĉq†(k, o)]

��� � e

!

 2|Q| exp
✓

�ne2

2(Bu � Bl)2

◆
.

Lemma 1 applies the classical consistency theorem [82] for extremum estimators. Here,

extremum estimators denote parametric functions optimized via maximizing or minimiz-

ing certain objectives; note that ĉq is optimized to maximize the binary cross-entropy in

Eq. 6.6. It illustrates that Î(n)
q† (K; O) convergent to Îq†(K; O) as n grows. Future, based the

universal approximation theory of neural networks [106], we have:
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Lemma 2 (Approximation). 8e > 0, there exists a family of neural networks N = {ĉq : q 2 Q}

such that

inf
ĉq2N

|EPK⇥O [log ĉq(k, o)]� I(K, O)|  e.

Lemma 2 states that Îq†(K; O) can approximate I(K; O) with arbitrary accuracy. There-

fore, Eq. 6.10 can be derived from Lemma 1 and Lemma 2 based on the triangular inequal-

ity.

6.11.2 Key Properties of Shapley Values

Following Sec. 6.6, this Appendix shows several key properties of Shapley value. We

discuss why it is suitable for side channel analysis and how the properties help our local-

ization.

Theorem 1 (Efficiency [220]). The sum of Shapley value of all participants (i.e., side channel

records) equals to the value of the grand coalition:

Â
i2Ro

pi(f) = f(o)� f(o∆). (6.13)

Theorem 1 states that the assigned Shapley value for each side channel record satisfies

the apportionment defined in Definition 3. f(o∆) = 0 since an empty o leaks no secret.

Theorem 2 (Symmetry [220]). If 8S ✓ Ro \ {i, j}, i- and j-th players are equivalent, i.e.,

f(oS[{i}) = f(oS[{j}), then pi(f) = pj(f).

Theorem 2 states records in o contributing equally to leakage have the same Shap-

ley value. Divergent Shapley values suggest divergent leakage on the relevant program

points. It ensures that all contributions are awarded Shapley values.

Theorem 3 (Dummy Player [220]). If the i-th participant is a dummy player, i.e., 8S ✓ Ro \

{i}, f(oS[{i})� f(oS) = f(o{i})� f(o∆), then pi(f) = f(o{i})� f(o∆).

Theorem 3, dubbed as “Dummy Player,” states that the information leakage in one pro-

gram point is not distributed to non-correlated points. In sum, Theorem 2 and Theorem 3

guarantee that the Shapley value apportionment is accurate. Further, if f(o{i}) = f(o∆),

we have the following theorem.
186



Theorem 3.1 (Null player [220]). If the i-th participant has no contribution to any grand coali-

tion game f, i.e., 8S ✓ Ro \ {i}, f(oS[{i}) = f(oS), then pi(f) = 0.

Theorem 3.1 is one special case of Theorem 3, and it guarantees that the Shapley value

has no false negative. That is, program points assigned with a zero Shapley value is

guaranteed to not contribute to information leakage.

Theorem 4 (Linearity [220]). If two coalition games, namely f and y, are combined, then pi(f +

y) = pi(f) + pi(y) for 8i 2 Ro.

Theorem 4 implies that if a secret has several independent components, then the as-

signed Shapley value for each side channel record equals to the linear sum of secrets

leaked on this record from all components. For instance, let p(fg) and p(fa) be the

leaked information by recovering two privacy-related properties, “gender” and “age,”

over portrait photos. Since these two properties are independent, when considering both,

the newly-computed leakage p(f) must equal the sum of p(fg) and p(fa) according to

Theorem 4. While this property allows for fine-grained leakage analysis, we currently

do not separate a secret into independent components. We view this exploration as one

future work.

Theorem 5 (Uniqueness [220]). The apportionment derived from Shapley value is the only one

that simultaneously satisfies Theorem 1, Theorem 2, Theorem 3 & 3.1, and Theorem 4.
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CHAPTER 7

CONCLUSION

With years of growing development, AI systems have gained widespread adoption across

numerous security- and privacy-critical applications. Therefore, this thesis comprehen-

sively studies the threat of different side channel leakages in infrastructures of modern

AI systems. It identifies cache side channel leakage in data processing libraries, where a

non-privileged malicious user can steal other user’s inputs to the AI system. This thesis

also finds that Trusted Execution Environments (TEEs) have severe secret leakage when

protecting neural networks: by exploiting TEE’s ciphertext side channels, user’s inputs

and the neural network’s weight can be recovered by a malicious host (e.g., either the AI

service provider or the host machine). Besides these attacks, this thesis also presents tech-

niques for localizing sources of different side channel leakages for defensive purposes.

Overall, the following works are presented in this thesis:

Our first work exploits cache side-channel leakage in data processing libraries of AI

systems. Modern AI systems accept high-dimensional media data (e.g., images, audios)

as inputs and adopt data processing libraries (e.g., Libjpeg, FFmpeg) to handle different

input formats; recovering AI inputs is inherently challenging given the high dimension

and complex format of such data. Unlike prior works that operate on data bytes (e.g., pixel

values of an image), we focus on semantic information in AI inputs (e.g., what constitutes

a face in an image) and significantly reduce the complexity of SCA. Our pipeline is unified

for different formats of AI inputs and is fully automated. We also propose low-cost yet

effective mitigation for the leakage.

Our second work further investigates data leakage induced by computations of neu-

ral networks and examines Trusted Execution Environments (TEEs). Despite that TEEs

are widely employed to ensure secure computations on neural networks from untrusted

providers, we show that this security belief is violated due to the recently disclosed ci-

phertext side channels in TEEs: a malicious neural network provider can precisely recover
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user’s inputs from the encrypted ciphertext in TEEs. We systematically examine the leak-

age in deep learning runtime interpreters including TensorFlow and PyTorch, and study

how their different computation paradigms affect the leakage. Our results also show that

optimizations in neural network compilers (e.g., TVM, Glow) can enlarge the leakage in

neural network executables.

Our third work studies how neural networks can be extracted under TEE protection

when deployed on an untrusted host machine. By exploiting ciphertext side channels in

TEEs, this work for the first time demonstrates the feasibility and practicality of recover-

ing neural networks. We implement a highly stealthy tool, HYPERTHEFT, that can recover

weights by observing the TEE-shielded neural network’s one execution without querying

it. The recovered neural network weights constantly achieve 77%⇠97% under different

attack scenarios. Based on HYPERTHEFT’s results, we further show how different down-

stream attacks can be enabled to leak training data and manipulate the neural network’s

outputs.

Moving to the defensive side, our last work addresses the quantification and localiza-

tion problems, two fundamental challenges in detecting side channel leakage. We first

review the (in-)adequacy of existing side channel detection methods and propose eight

criteria for designing a full-fledged cache side channel detector. Accordingly, we propose

CACHEQL that meets all these criteria. CACHEQL quantifies the leakage as the mutual

information between the secret and its resulting side channel observation. To localize the

leakage source, CACHEQL distributes the leaked information among vulnerable program

modules via game theory. With meticulous optimizations, CACHEQL is highly scalable

and applies to production software; it also largely improves the quantification precision

and reduces the cost of localization from exponential to almost constant.
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