
Compiled Models, Built-In Exploits: Uncovering
Pervasive Bit-Flip Attack Surfaces in DNN

Executables
Yanzuo Chen†, Zhibo Liu†, Yuanyuan Yuan†∗, Sihang Hu‡, Tianxiang Li‡, Shuai Wang†∗

†The Hong Kong University of Science and Technology, ‡Huawei Technologies
†{ychenjo,zliudc,yyuanaq,shuaiw}@cse.ust.hk, ‡{husihang,litianxiang4}@huawei.com

Abstract—Recent research has shown that bit-flip attacks
(BFAs) can manipulate deep neural networks (DNNs) via DRAM
Rowhammer exploitations. For high-level DNN models running
on deep learning (DL) frameworks like PyTorch, extensive
BFAs have been conducted to flip bits in model weights and
shown effective. Defenses have also been proposed to guard
model weights. Nevertheless, DNNs are increasingly compiled into
DNN executables by DL compilers to leverage hardware primi-
tives. These executables manifest new and distinct computation
paradigms; we find existing research failing to accurately capture
and expose the attack surface of BFAs on DNN executables.

To this end, we launch the first systematic study of BFAs on
DNN executables and reveal new attack surfaces neglected or
underestimated in previous work. Specifically, prior BFAs in DL
frameworks are limited to attacking model weights and assume
a strong whitebox attacker with full knowledge of victim model
weights, which is unrealistic as weights are often confidential. In
contrast, we find that BFAs on DNN executables can achieve high
effectiveness by exploiting the model structure (usually stored in
the executable code), which only requires knowing the (often
public) model structure. Importantly, such structure-based BFAs
are pervasive, transferable, and more severe (e.g., single-bit flips
lead to successful attacks) in DNN executables; they also slip past
existing defenses.

To realistically demonstrate the new attack surfaces, we
assume a weak and more realistic attacker with no knowledge
of victim model weights. We design an automated tool to
identify vulnerable bits in victim executables with high confidence
(70% compared to the baseline 2%). Launching this tool on
DDR4 DRAM, we show that only 1.4 flips on average are
needed to fully downgrade the accuracy of victim executables,
including quantized models which could require 23× more flips
previously, to random guesses. We comprehensively evaluate
16 DNN executables, covering three large-scale DNN models
trained on three commonly-used datasets compiled by the two
most popular DL compilers. Our finding calls for incorporating
security mechanisms in future DNN compilation toolchains.

I. INTRODUCTION

Recent years have witnessed increasing demand for appli-
cations of deep learning (DL) in real-world scenarios. This

∗Corresponding authors.

demand has led to extensive deployment of deep neural
network (DNN) models in a wide spectrum of computing
platforms, ranging from cloud servers to embedded devices.
To date, a promising trend is to use DL compilers to compile
DNN models in high-level model specifications into optimized
machine code for a variety of hardware backends [15], [75],
[54]. Hence, instead of being interpreted in frameworks like
PyTorch, DNN models can be shipped in a “standalone”
binary format and executed directly on CPUs, GPUs, or other
hardware accelerators. More and more DNN executables have
been deployed on mobile devices [60], [37], [66], [59] and
cloud computing scenarios [4], [86].

Despite the prosperous adoption of DNN executables in
real-world scenarios, their attack surface is largely unexplored.
In particular, existing research has demonstrated that bit-flip
attacks (BFAs) enabled by DRAM Rowhammer (RH) are
effective in manipulating DNN models [35], [69]; defenses
have also been proposed accordingly. However, existing at-
tacks and defenses only apply to BFAs on DNN models in DL
frameworks like PyTorch, leading to a greatly underestimated
attack surface of BFA on DNN executables because: (1) Prior
works mostly attack and protect the weights in a DNN model,
neglecting the fact that the model structure becomes more
readily attackable in compiled, standalone executables. (2) As
earlier attacks frequently need the gradients of victim model
weights, a strong, whitebox attacker with full knowledge of the
victim model is usually an assumed requirement, which may
not be realistic given that model weights and training data are
often confidential. On the contrary, attackers leveraging point
(1) do not need whitebox knowledge, as we will explain in
this paper. (3) Existing defenses, being designed specifically
for weights-based BFAs, fail to consider or provide protection
against attacks on DNN executables, resulting in a false
sense of security. Thus, it is high time that a systematic
study on the attack surface of BFAs on DNN executables be
conducted. To this end, our work provides the first and in-depth
understanding of the severity of BFAs on DNN executables.
Our findings suggest the need to incorporate comprehensive
mechanisms in DNN compilation toolchains to harden real-
world DNN executables against exploitations.

Importantly, among the vulnerable bits in model structures,
we find that a large portion of them are transferable be-
tween DNN executables sharing the same model structure

Network and Distributed System Security (NDSS) Symposium 2025
23 - 28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.23419
www.ndss-symposium.org

(see Sec. VI-D and Sec. VI-E). We design a novel vulnerable
bit searcher based on this observation that can be used by
attackers to identify vulnerable bits in the victim executable
with high confidence, increasing the search success rate from
2% (baseline) to 70%. This supersedes the strong, whitebox
attacker requirement in previous works and shows that BFAs
can be launched by attackers knowing only the victim model
structure which is often public or recoverable [8], [89], [36].
Using our search tool, we demonstrate that only 1.4 flips
on average are needed to completely destroy the inference
capability of a DNN model, including quantized models which
have been considered more robust and required 2× to 23×
more bit flips than their full-precision versions previously [88],
[35]. We also adopt and augment an RH attack technique [40]
to show successful exploitations on DNN executables deployed
on real-world DDR4 devices.

Our extensive study is conducted over DNN executables
emitted by two commonly used production-level DL compil-
ers, TVM [15] and Glow [75], developed by Amazon and
Meta (Facebook), respectively. We assess the attack surface on
diverse combinations of DNN models, datasets, and compilers,
covered by a total of 16 DNN executables in this study. We
made important observations, including ❶ Pervasiveness: we
identify on average 16,599 vulnerable bits in each of the DNN
executables we studied, even for quantized models, which have
been known to be more robust than full-precision models [88],
[35]. ❷ Effectiveness & Stealthiness: 71.1% of the RH attacks
reported in this work succeed with only a single bit flip,
while 95.6% succeed within 3 flips, making RH attacks highly
effective in practice. ❸ Versatility: we show that BFAs can
achieve various attack end-goals over both classification and
generative models. ❹ Transferability: we also find many “su-
perbits” — vulnerable bits that exist across DNN executables
sharing the same model structure (.text section) but with
different weights. To demonstrate the feasibility of ❺ Practical
exploitation, we launch our attack on DDR4 DRAM modules
and show that attackers succeed with just 1.4 flips on average,
meaning that the high cost for techniques like RH is no
longer an obstacle. We further conduct reverse engineering
and manual analysis to characterize those vulnerable bits. Our
work highlights the need to incorporate security mechanisms
in future DNN compilation toolchains to enhance the relia-
bility of real-world DNN executables against exploitations. In
summary, we contribute the following:

• This paper launches the first in-depth study on the attack
surface of DNN executables under BFA, revealing the un-
derestimated severity of BFA on DNN models compiled as
executables.

• We instantiate our observations as an RH-based attack to
show how BFAs on DNN executables can be launched under
a threat model more realistic and restrictive for attackers
than before. We design a novel method to identify vulnerable
bits in the victim executable with ∼70% accuracy (compared
to ∼2% in the baseline) and assess our attack on DDR4
DRAM modules.

• Our empirical findings uncover the pervasiveness, stealthi-
ness, versatility, and transferability of BFA vectors on DNN
executables. We present case studies and root cause analysis
to characterize the vulnerable bits in DNN executables.

• We release our attack artifact, including all scripts and data,
to the research community at https://sites.google.com/view/
exe-single-bit-bfa [1].

II. PRELIMINARIES AND MOTIVATIONS

A. DL Compilers and DNN Executables

DNN Compilation. DL compilers typically accept a high-
level description of a well-trained DNN model, exported
from DL frameworks like PyTorch, as their input. During
compilation, DL compilers often convert the model into
intermediate representations (IRs) for optimizations. High-
level, platform-agnostic IRs are often graph-based, specifying
the model’s computation flow. Platform-specific IRs such as
TVM’s TensorIR and Glow’s High Level Optimizer (HLO)
specify how the DNN model is implemented on a specific
hardware backend and support hardware-specific optimiza-
tions. Optimizations performed by DL compilers often in-
clude constant folding, operator fusion (e.g., fusing a ReLU
operator with a preceding convolution operator), platform-
aware scheduling, and others. Finally, DL compilers convert
their low-level IRs into assembly code (or first into standard
LLVM/CUDA IR [44], [58]).

DNN Executables. Popular DL compilers including TVM [15]
and Glow [75] emit DNN executables in the standard ELF
format to be executed on mainstream CPUs and other hard-
ware. The emitted DNN executables can be in a standalone
executable or a shared library (a .so file loadable by other
programs). Without loss of generality, we focus on the .so
format in this paper; our attack pipeline and findings can
be easily applied to standalone executables. Traditionally,
DL frameworks essentially interpret the DNN model as a
computational graph and offload low-level computation to
external kernel libraries like cuDNN [17] and MKL-DNN [38].
DNN executables, in contrast, usually do not rely on runtime
libraries, but have all computation operations compiled into the
binary (e.g., via just-in-time compilation), often in specialized
form and fused with other operations.

Real-World Usage. The real-world usage of DL compilers and
DNN executables has been illustrated in recent research [15],
[75], [54], [39] and industry practice. The TVM community
has reported that TVM has received code contributions from
companies including Amazon, Facebook (Meta), Microsoft,
and Qualcomm [19]. While GPUs are often used for DNN
tasks today, DL compilers fulfill the emerging demand for a
wide range of other platforms. TVM has been used to compile
DNN models for CPUs [51], [39]. Facebook has deployed
Glow-compiled DNN models on CPUs [57]. Overall, DL com-
pilers are increasingly vital to boost DL on CPUs, embedded
devices, and other heterogeneous hardware backends [4], [86].
This work exploits the output of DL compilers, i.e., DNN

2

https://sites.google.com/view/exe-single-bit-bfa
https://sites.google.com/view/exe-single-bit-bfa

executables, and we, for the first time, show the pervasiveness
and severity of BFA vectors in DNN executables.

B. Bit-Flip Attacks

BFA via Rowhammer Attack. BFA is a type of hardware
fault injection attack that corrupts the memory content of
a target system (by flipping its bits). While BFA can be
initialized via a variety of hardware faults [21], RH [42]
manifests as one highly effective, practical, and controlled
fault injection attack. In short, RH exploits DRAM disturbance
errors, such that for some modern mainstream DRAM devices,
repeatedly accessing a row of memory can cause bit flips in
adjacent rows. RH roots in the fact that frequent accesses on
one DRAM row introduce voltage toggling on DRAM word
lines. This results in quicker leakage of capacitor charge for
DRAM cells in the neighboring rows. If sufficient charge is
leaked before the next scheduled refresh, the memory cell
will eventually lose its state, and a bit flip is induced. By
carefully selecting neighboring rows (aggressor rows) and
intentionally performing frequent row activations (“hammer-
ing”), attackers can manipulate some bits without directly
accessing them. For DDR3 DRAM, RH attacks are easily
launched by alternating accesses to the two rows adjacent
to the victim row (“double-sided hammering”). For DDR4,
more recent research has pointed out that attackers need to
precisely control the frequency-domain parameters (phase,
frequency, and amplitude) of the hammering procedure to
induce bit flips [40]. While contemporary BFA research is
mostly demonstrated on DDR3 DRAM devices [43], [88],
[68], this work demonstrates RH attacks on recent DDR4
DRAM devices.

BFA on DNN. Recent research has specifically launched BFA
toward DNN models [14], [35], [69], [70], [71], [72], [88]. The
attack goals of BFAs can be generally divided into two cate-
gories: first, BFA may be launched to extensively manipulate
model predictions over all inputs, possibly reducing the model
accuracy to random guesses. In contrast to typical DNN train-
ing that aims to minimize the loss, BFA strives to maximize
the loss function L to temper inputs [69], [88]. Meanwhile,
targeted BFA (T-BFA) aims to manipulate prediction output
over specific inputs [71]. T-BFA retains the original predictions
over the other inputs to offer a stealthier attack. For both types
of attacks, existing works primarily launch BFA to flip bits in
the model weights. For example, ProFlip [14] identifies and
flips the weights of specific salient neurons to extremely large
values, which can control the overall predictions for certain
classes. On the other hand, different defense mechanisms have
also been proposed to protect DNN models from BFAs. Recent
research has shown that models are more robust against BFAs
after being quantized, requiring 2× to 23× more bit flips
to achieve the same attack goals compared to their floating-
point counterparts [88], [69], [35]. In this work, however, we
show that quantization does not grant DNN executables more
robustness against BFAs, and attackers can still succeed by
flipping a single bit, as shown in Sec. VI-E. In fact, most

CPU & Main Memory

(.rodata)
Weights Weights

DNN Executables PyTorch & CPU

(.text)
Compiled

DNN Structure

Attackable

Open Problem

Secret to Us

Interpreted
DNN Structure

on Python
Runtime

Threat model of existing BFAs:
Fully whitebox

Our threat model:
Model structure only

GPU Platform

Weights
(On GPU)

PyTorch & GPU

CUDA
Program

Components

Existing BFA

Ours

Attack Targets

Fig. 1. Runtime systems of DNN models in DL frameworks and in executa-
bles. Here, “secret” means they are technically attackable as demonstrated in
prior works [71], [88], [85], but in reality they are often unknown to attackers.

existing defenses cannot be ported to DNN executables or
cannot protect against attacks targeting these executables, as
we will discuss more in Sec. VII-A.

C. Research Motivation

BFA Specialized for DNN executables. Fig. 1 compares
deploying DNN executables in CPU & main memory with
running DNN models in PyTorch. Existing BFAs on DL
frameworks (e.g., [35], [69]) primarily target the trained
weights of DNN models while using their model structures
to compute gradients. On the other hand, launching hardware
exploitations against interpretation-based environments like
the Python runtime is an open problem and only few works
have presented limited demonstrations [64]. It is also unclear
whether GPU memories are vulnerable to BFAs. On DNN
executables, however, the model structure is also statically
compiled into the binary (in contrast to being dynamically
interpreted on high-level frameworks), making it more readily
attackable. And compared to code-targeting BFAs on non-
DNN programs [26] which can hardly be automated due to
the complexity of generic programs, attackers can exploit
DNN’s task-specific nature to derive metrics and oracles to
automate the search for vulnerable bits, rendering the attack
more scalable and practical.1

Thus, this research analyzes the attack vectors in DNN
executables, particularly their .text sections that contain the
model structure information (indicated by “our attack target”
in Fig. 1, as opposed to existing BFA which targets model
weights). In essence, previous weights-based BFAs break the
data flow integrity while our structure-based BFAs attack both
the control and data flow (see case studies in Sec. VI-F) of the
victim model; this type of BFA also exposes the gap in BFA
defenses on DNN executables, as mentioned in Sec. II-B.

BFA on DNN Executables with Weak Attackers. To locate
vulnerable bits in model weights, prior works often use
gradient-based searching and thus require model weights to
be known to the attacker (i.e., a fully whitebox attacker is
needed). We instead assume a weak, graybox attacker who

1Also for this reason, it is not suitable to compare BFAs on DNNs to those
on non-DNN programs, as it may result in unaligned attack objectives and
potentially questionable results.

3

only knows the model structure without any information about
the weights (as marked by the lock in Fig. 1 on .rodata
which usually stores the weights); we consider this a more
realistic scenario as model weights are often proprietary but
the model structure is often public or recoverable [8], [89],
[36]. Under this assumption, we show the feasibility of launch-
ing effective BFAs on DNN executables by leveraging our
findings on DNN executables’ BFA surfaces. We also design
an automated search tool to identify vulnerable bits in the
victim executable with high confidence (see Sec. IV).

III. THREAT MODEL AND ASSUMPTIONS

Attacker’s Target and Goals. In this paper, attackers launch
BFAs targeting the model structure (in the .text section,
as shown in Fig. 1) of victim DNN executables. The at-
tacker has two end goals for the two representative types of
DNN models in this paper, respectively: for classifiers, we
successfully downgrade the inference accuracy of the victim
DNN model to random guess, and for generative models,
we temper the generation results to get biased or distorted
outputs. As clarified in Sec. IV-B and empirically shown in
Sec. VI-C, our downgrading attack can be easily extended
to more targeted attacks (often referred to as T-BFA), e.g.,
manipulating the classification outputs of specific inputs to
a target class. In addition, tempered generation results can
consequently result in model poisoning attacks when used in
data augmentation [11], [55], [77].

While DNN’s outputs may also be deceived by certain
crafted inputs (e.g., adversarial examples [25]), they generally
tamper the feature extraction process (i.e., algorithmic vulner-
abilities) and manipulate the output for each crafted input. In
contrast, our attack and other BFAs exploit the implementation
vulnerabilities of DNNs, making them malfunction when
processing almost all normal, legitimate inputs.

Environment. Our attack targets DNN executables compiled
by DL compilers, deployed on a resource-sharing machine-
learning-as-a-service (MLaaS) environment [74]. The attacker
is co-located with the victim and can run an unprivileged user
process on the same machine as the victim DNN executable.
The attack happens after the victim executable is loaded into
the memory and ready for execution, as is consistent with
existing works. We assume that proper isolation mechanisms
are in place to prevent the attacker from directly access-
ing any victim-owned files or memory pages. The attacker
launches BFA using currently mature RH exploitation tech-
niques, whose steps include memory templating [73], memory
massaging [76], [68], and hammering [40], [24]. We also align
with other BFAs like [88] to minimize the number of flips
for an attack, considering the high cost of launching RH in
practice. Our assumptions are reasonable and, in fact, represent
a weaker attacker than prior attacks [71], [88], [85].

During attacks, no software-level vulnerabilities on the
victim DNN executables or the host machine is required,
and the attacker does not feed maliciously crafted inputs
(“adversarial examples” [25]) to the victim DNN executable.

TABLE I
A COMPARISON OF OUR THREAT MODEL WITH RELATED WORKS, WHERE

✔ AND ✕ SIGNIFY “REQUIRED” AND “UNNEEDED,” RESPECTIVELY.

Stealing
Attacks [68], [31] DeepHammer [88] T-BFA [71] Ours

Model Structure ✔ ✔ ✔ ✔
Weights ✕ ✔ ✔ ✕
Training Data ✔ ✕ ✕ ✕
Victim File Readable ✕ ✔ ✔ ✕
Common Shared Library ✔ ✕ ✕ ✕

Attacker Goal Duplicate DNN’s
Functionality

Manipulate DNN’s
Outputs

The victim DNN executable exposes its public query interface
(e.g., for normal users to submit medical images and obtain
diagnosis); the attacker can submit benign inputs to get the
model’s outputs via this public interface during RH.

Knowledge of the Victim DNN Model. We assume that
only the victim model’s structure is known to the attacker.
This is a practical assumption because model structures (in
contrast to weights) are often public.2 Even in the case of
private or partially known model structures, recent works have
demonstrated the feasibility of recovering the full details of
DNN structures [36], [93], [87], [53], [52]; attackers can infer
the model structure with these techniques before launching our
attack. With the model structure, the attacker can construct
and compile a set of same-structure-different-weights models
(Sec. IV-C) to facilitate offline bit searching (Sec. IV-B), which
will allow her to attack the victim DNN even when the victim’s
weights are completely unknown.

Comparison with Existing Works. We compare our threat
model with the most recent related works in Table I, where we
assume the weakest attacker, needing only the victim DNN’s
model structure to manipulate its outputs.

All prior relevant BFAs [5], [14], [70], [71], [88] assume
that attackers have full knowledge of the victim DNN model
including the model structure and the trained weights to,
e.g., compute gradients. We deem this as an overly strong
assumption: DNN weights are generally trained on private
data and viewed as the key intellectual property of DNNs. In
practice, only DNN owners have access to the trained weights,
and no existing attacks can fully recover DNN weights.3

While RH and similar hardware fault injection techniques
are employed to steal DNN’s model weights in recent
works [68], [31] (a different attack objective, as indicated
in the 2nd column in Table I), they require a portion of the
victim’s labeled training dataset [68], [31]; we have no such
requirements because training data is often, if not always,
more confidential than the trained weights. Moreover, their
recovered weights do not reduce the requirement for victim’s
weight knowledge in weight-targeting BFAs, because they are
only functionally similar to the actual weights and cannot aid
the attacker’s gradient computation.

2Most commercial DNNs are built on public well-defined backbones, e.g.,
Transformer [84] is the building block of the GPT models [10].

3Query-based model extraction [81], [61] only obtain DNNs functionally
similar to the victim DNN but does not recover the exact weight values.

4

Our attack does not need (even read-only) access to the
victim’s files as in prior works [88], [71], and thanks to the
compact nature of DNN executables, we can further drop the
requirement of common shared libraries between the attacker
and victim [68]; see our attack pipeline in Sec. IV-B. Overall,
our requirements are quite permissive for the attacker; it is
indeed a looser set of assumptions when compared to prior
techniques launching BFAs toward DNN models in high-level
DL frameworks, which work in a purely whitebox scenario.

IV. ASSAULT FROM A WEAK ATTACKER

A. Overview and “Superbits”

Under the assumption of a weak attacker (Sec. III), we
present our attack pipeline in Sec. IV-B to show how DNN
executables can be attacked. Importantly, our attacker benefits
from transferable superbits — vulnerable bits that exist across
DNN executables (compiled using the same DL compiler)
sharing the same model structure but with different weights,
as mentioned in Sec. I. These superbits are key in allowing
the attacker to launch the attack without whitebox knowledge
of the victim DNN.

Aligned with previous BFAs towards DNNs [88], [71], our
attacker starts with a local profiling step where she constructs
DNN executables with the same structure as the victim ex-
ecutable. This enables her to conduct an offline bit search
(in an attacker-controlled, simulated environment) and identify
these superbits. We present in Sec. IV-C the rationale and
method of constructing the profiling DNN executables. Once
the bit search finishes, the online attack is conducted via RH
exploitation in the real-world environment; we demonstrate the
attack on DDR4 DRAM in Sec. VI-E.

B. BFA Pipeline

Criteria for Vulnerable Bits. We first give the attacker’s
definition for “vulnerable bits” for classification and generative
DNNs, respectively. For classifier DNNs, vulnerable bits are
bits that cause the inference accuracy of the model to drop to
random guess (≈ 1

#classes) once flipped. For a generative model,
vulnerable bits cause its output image quality or semantics to
drastically change (see details in Sec. VI-A). In either case,
vulnerable bits cannot cause the DNN to crash. Moreover,
since this paper focuses on single-bit BFAs (unlike prior works
which need a chain of bit flips to achieve the same effect [88],
[69]), we do not consider vulnerable bits that need to be
chained with others. Fig. 2 depicts our attack pipeline which
consists of three steps:

Offline: Searching for “Superbits.” As mentioned in Sec. III,
we assume the attacker to have no knowledge about the
weights or training data of the victim model; she must rely
on what she knows (the model structure) to decide which bits
in the victim executable’s .text region to attempt to flip.
We achieve this with a novel offline bit search method. Our
evaluation shows that the attacker can use this approach to
confidently identify such superbits in the victim executable
with ∼70% accuracy, compared to ∼2% in the baseline case

where the attacker randomly selects bits to flip, as will be
shown in Sec. VI-E. We now give more details on the method.

Let fθ be the victim DNN model, where θ denotes its
weights and f its structure. Let e be the executable obtained
by compiling fθ. First, the attacker locally prepares a series of
n DNN executables E = {e1, e2, ..., en}, where each ei ∈ E
shares the identical structure with the victim DNN e but with
different weights. Here, we require that weights in each ei be
well-trained (noted as “trained weights”). That is, the weights
must be the output of a training process with an optimizer,
instead of being randomly initialized. We elaborate on the
rationale and how to obtain them in Sec. IV-C.

After obtaining E , the attacker starts to use them as local
profiling targets. Ultimately, our goal is to find vulnerable bits
in e that can be flipped to cause a desired effect, but this
is challenging because it is normally hard to tell whether an
arbitrary bit will be a vulnerable bit in the victim executable
e whose weights are never exposed to the attacker. Recall
that, as mentioned earlier, we identify superbits that are
transferable among a set E of DNN executables with distinct
weights; attackers can leverage this transferability to search for
vulnerable bits. More specifically, the problem of searching for
vulnerable bits in the victim e can be transformed into finding
superbits shared by E (denoted by SE) that are likely also
shared by e; we give details below.

Given a set of n DNN executables E = {e1, e2, ..., en}, we
define the superbits among E as the vulnerable bits shared
by all of them: SE

def
=

⋂n
i=1 Vi, where Vi is the set of

vulnerable bits found in ei, as illustrated in Fig. 2(a). As
the size of E increases, SE becomes a set of superbits that
are shared by more and more ei’s. Intuitively, these superbits
are also more likely to affect the victim e as well, since e
has the same model structure as ei. Although the superbits’
vulnerability in e is not guaranteed and the attacker will not
know until she launches the online attack towards e, our
empirical results show that this approach finds vulnerable bits
in e with high enough accuracy for real-world attackers to
conveniently launch practical attacks, as we will demonstrate
in Sec. VI-E.

To obtain Vi for every ei, a naı̈ve attacker would need to
sweep all bits in each ei’s .text section and check if the
vulnerability condition is met, then repeat this process for all
ei ∈ E . However, this can be very time-consuming, especially
for complex DNNs that can have more than 6.8 million
bits in their .text sections, according to our preliminary
study. To speed up the search, the sweeping process and
intersection calculation can be interleaved so that the attacker
can iteratively shrink SE , starting with SE = V1, each iteration
trying the bits already in SE on an unswept binary e′ and
removing those that are not vulnerable in e′, instead of trying
all bits in e′. During this process, the attacker will need to
flip bits in the local executables E and assess their effects.
We clarify that this is simple: as the attacker has full control
over E and her local environment, she can easily achieve bit
flipping by editing the binary files.

5

Choose a bit
from Se

(a) Preparation phase.

Memory Templating

Local Bit Searching

Vuln. bits in ei

Start

Failure

No more bits

Has template &
In unflipped page?

No

Yes

(b) Online RH-based attack in an MLaaS environment.

Use template to flip bit

Setup aggressor rows

Use effective access pattern

Memory massaging Launch RH

Success
Attack Goal

Reached
Release used

templates
Victim

Crashed

No significant effect

Superbits
<latexit sha1_base64="MZvAERVd9m1AYuFeOGuJkwvcy74=">AAACfHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQuIx+QmlmQkJ+ZUB9fGw9mutfECygZ6ZgbGlkZGCgZ6RqYWFkYmCoZ6BmAAZygzQEFAvsByhhiGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7yyL8lLA1ODZjNwASMAI7gxGWFGeoZmeqaBJsoOTtCo4GCQZlBi0ACGtzmDA4MHQwBDKNjexQxrGNYy/mNSYdJm0oUoZWKE6hFmQAFMZgA8EJQe</latexit>

SE
Victim Executable

.text
11010010

Bits:
10010010

.rodata
Weights

e1 e2 en <latexit sha1_base64="MZvAERVd9m1AYuFeOGuJkwvcy74=">AAACfHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQuIx+QmlmQkJ+ZUB9fGw9mutfECygZ6ZgbGlkZGCgZ6RqYWFkYmCoZ6BmAAZygzQEFAvsByhhiGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7yyL8lLA1ODZjNwASMAI7gxGWFGeoZmeqaBJsoOTtCo4GCQZlBi0ACGtzmDA4MHQwBDKNjexQxrGNYy/mNSYdJm0oUoZWKE6hFmQAFMZgA8EJQe</latexit>

SE

…

…

Build executables
with fake datasets

+

🔨

Fig. 2. The attack pipeline. The “lock” symbol in the top right means attackers cannot access the weights of the victim.

Once the offline bit search finishes, the attacker can proceed
to the online steps. While we present an RH-based attack, our
bit search algorithm is generic and can be used with other
BFA techniques as well, such as using laser beams [9].

Online Preparation: Memory Templating. Our attack is
achievable in practical settings: we consider the attacker to
have no direct access to victim-owned resources and no
knowledge on victim’s weights. As a “warm up,” the attacker
needs to scan the DRAM module in the host machine for bit
locations that can be flipped using RH, a procedure called
memory templating [73]. A bit is flippable using RH only if
there is a “template” in the DRAM module with the same
bit location and flip direction. For DDR4 platforms, an effec-
tive “DRAM access pattern [40]” containing the frequency-
domain parameters needed to launch RH on the platform
must also be found to trigger a flip. The set of metadata
describing where RH can flip bits and how to flip each bit is
called memory templates. Currently, multiple tools have been
made available to find these templates on DDR4, including
Blacksmith [40] and TRRespass [24]. In our pipeline, we
leverage and slightly extend Blacksmith, the state-of-the-art
RH technique for DDR4, to perform memory templating and
use the access patterns it found in the attack step later.

Online Attack: RH. After determining the set of superbits
SE and obtaining the memory templates, the attacker can
launch RH to flip the vulnerable bits in e. She first chooses
a superbit s ∈ SE that has at least one available template,
whose information has been obtained in the “warm-up” phase.
Then, as shown in Fig. 2(b), she also needs to check if the
bit belongs to an unflipped page: due to limitations of current
RH techniques, as pointed by prior BFA works [73], [88], we
restrict our attacker to be able to flip only one bit per physical
page, unless the victim executable crashed and restarted, in
which case its allocated memory is regarded as reset. If all
these requirements are met, the attacker can then use the
template to flip the bit via standard RH, whose steps include
memory massaging, setting up aggressor rows, and applying
the effective access pattern. Here, memory massaging refers to
the process of precisely placing the memory page containing
the bit to flip at the location specified by the template [76],
[73], [88], [43], [82], [68]. More specifically, the attacker
can abuse the per-CPU page frame cache in Linux to highly

precisely relocate the victim pages to vulnerable locations [43],
[68], [88], and given the usually small code page sizes in DNN
executables (≪ 2MB; see Sec. V), this can be done without
the assistance of additional side channel attacks or common
shared libraries between the attacker and victim [68].

Once the bit flip is triggered by RH, the attacker queries
the victim executable via its public interface to check if its
behavior has changed as expected. As shown in Fig. 2(b),
there are three possible outcomes: (1) the victim’s behavior
changes as expected, which is the desired outcome; (2) the
victim crashes, which is undesirable since attackers wish to
manipulate the victim’s behavior without crashing it; and
(3) the victim’s behavior does not change, which is also
undesirable. In the latter two cases, the attacker has to repeat
the above process with a different superbit s until she finds
a bit that can be flipped and changes the victim’s behavior
as expected, or runs out of possible superbits to try. Our
experiments on DDR4 DRAM (Sec. VI-E) show that the
attacker succeeds on the first flip attempt 71.1% of the time,
and succeeds within 3 attempts 95.6% of the time. Moreover,
our attack is agnostic to RH techniques, and the above steps
can replaced by any other RH techniques if available [42],
[27], [48]. Our attack is also not coupled with the DDR4
standard; DDR3 or DDR5 platforms can be targeted as well,
given that the attacker picks a suitable RH technique.

C. Preparing DNN Executables with Well-Trained Weights for
Local Profiling

We mentioned in Sec. IV-B that attackers need trained
weights to construct the local set of DNN executables E . We
now elaborate on the rationale and challenges for getting them,
as well as how we efficiently and effectively obtain enough of
them for a relatively large E (e.g., when |E| > 10).

DNN Functionality. We start by formulating a DNN’s func-
tionality. In general, a DNN fθ : X → Y can be viewed
as a parameterized function mapping an input x ∈ X to an
output y ∈ Y . The DNN structure (denoted by f) is a non-
linear function and the weights θ are learned from training
data, implicitly representing the rules for mapping X to Y .

Well-Trained vs. Randomly-Initialized Weights. A group of
well-trained weights θ should encode a fixed mapping (implic-
itly) defined by the training data. This encoding is gradually

6

x0,0
0

x0,1
1

x0,2
0

x1,0
0

x1,1
1

x1,2
0

x2,0
0

x2,1
0

x2,2
0

(a) DNN w/ random θ (c) DNN w/ trained θ(b) Input x (d) Alternative θ

𝜃0,0
0

𝜃0,1
0.1

𝜃1,0
0

𝜃1,1
0.9

𝜃0,0
0

𝜃0,1
1

𝜃1,0
0

𝜃1,1
0

𝜃0,0
0.68

𝜃0,1
0.34

𝜃1,0
0.04

𝜃1,1
0.41

Fig. 3. Comparing DNNs with trained/random weights θ.

formed through training, during which the randomness (i.e.,
entropy) in weights gradually reduces [46], [22], [62], [6].
Once trained, the resulting mapping typically “focuses” more
on some input elements than others (i.e., they tend to develop
preferences). This distinguishes a well-trained DNN from a
DNN with randomly initialized weights: the latter usually
spreads its focus more evenly onto all input elements.

We illustrate this with an intuitive example in Fig. 3, where
we show the computation of the same convolutional DNN with
different types of weights. The randomly initialized weights
before training are shown in Fig. 3(a). After training, they
are updated to specialize in recognizing certain features, as
shown in Fig. 3(c). When given the same input x illustrated
in Fig. 3(b), the trained weights “focus” only on x0,1, x0,2,
x1,1, and x1,2 because only θ0,1 is non-zero, while randomly
initialized weights treat all input elements x0,0–x2,2 more
equally.

Algorithm 1: Execution of a Sample Conv DNN.
1 function Conv2D DNN(x, θ):
2 kernel← [2, 2]; stride← 1; out← 0;

// slide the kernel θ over input
3 for i← 0 to 3− kernel[0] by stride do
4 for j ← 0 to 3− kernel[1] by stride do

// multiply θ with overlapped input
elements

5 for k ← 0 to kernel[0]− 1 by 1 do
6 for l← 0 to kernel[1]− 1 by 1 do
7 out← out+ xi+k,j+l ∗ θk,l;

8 out← ReLU(out);
9 return out > 0;

Different types of weights can cause the same DNN model
to have different vulnerable bits after being compiled into
executables. Consider the (simplified) execution process of the
DNN model f in Fig. 3, shown in Alg. 1. Suppose the attacker
flips a bit at line 6 so that the loop at line 6 always exits
after the first iteration.4 Since this keeps l fixed at 0 during
the computation at line 7, it changes the prediction output (the
value of out) for the trained DNN (Fig. 3(c)) from 1 to 0. But if
the same flip is applied to f with randomly initialized weights
(e.g., Fig. 3(a)), the prediction output remains unchanged.

Here, we are not stating that all possible trained weights will
share this same vulnerable bit. Rather, it is more likely to find
common vulnerabilities between trained weights (which have
developed preferences and have lower entropy [46], [22], [62],
[6]) than between trained and randomly initialized weights.
Fig. 3(d) shows an example of another set of trained weights

4We show various ways BFA can affect program execution in Sec. VI-F.

that, even though specialized to recognize different features
than Fig. 3(c), also have the same vulnerable bit at line 6; in
other words, this specific vulnerable bit is transferable (i.e., is
a superbit) among the two sets of weights.

It is these transferable vulnerable bits, or superbits, that
are the most useful to our rather constrained attacker: they
allow her to launch BFA with zero knowledge of victim model
weights. Specifically, if we have identified some superbits
shared by multiple executables with (different) trained weights,
we have high confidence that these bits are also vulnerable in
the victim executable5; we empirically show this in Sec. VI-E.
Thus, we require the set of local DNN executables E used for
offline bit searching to consist of only executables with trained
weights, not randomly initialized weights.
Constructing Fake Datasets. Recall that our threat model
prohibits the attacker from accessing the victim’s weights or
training data; the attacker thus needs to decide the dataset(s)
to use to train the models in E . Possibly, she may arbitrarily
choose a publicly available dataset, but this may hurt the
transferability of the vulnerable bits found, as all local models
may learn similar mappings. Or she can choose a range of
public datasets to train the weights, but it remains unclear
according to what metrics they should be chosen, and similar
semantics (e.g., overlapping classes) between datasets may
also amplify the vulnerable bits’ transferability, leading to
overestimated attack surface. Thus, we need a new method
to obtain enough distinct trained weights that are not biased
towards specific datasets involved in training the local models.

One unique opportunity, as observed in our study, is that the
mapping encoded in a DNN does not have to be semantically
meaningful (e.g., corresponds to real-world objects). Since we
only focus on the distinction between mappings, it is unnec-
essary to train weights on different real datasets. Also, we are
inspired by the observation in the machine learning community
that pre-training DNNs with random noise can speed up the
fine-tuning on real and meaningful datasets, because DNN
weights have been “regulated” to become similar to those
trained on real datasets during pre-training [63], [56]. Thus,
we construct distinct “fake datasets” using random noise with
different random seeds. To do so, we first randomly generate
random noise as inputs and assign labels for them. Once
this is done, the inputs and their labels are fixed; a fake
dataset is therefore constructed. Then, when trained on a fake
dataset, randomly initialized weights are gradually updated to
encode the mapping in the fake dataset, forming the DNN’s
preferences. Since the mappings in different fake datasets are
completely different, training on multiple fake datasets allows
us to obtain DNN weights with distinct preferences without
depending on external datasets.

V. STUDY SETUP

DL Compilers. This research uses two DL compilers, TVM
(version 0.9.0) and Glow (revision b91adff10), developed
by Amazon and Meta (Facebook), respectively. To the best

5We reasonably assume the victim model also has trained weights.

7

TABLE II
STATISTICS OF DNN MODELS AND THEIR COMPILED EXECUTABLES

EVALUATED IN OUR STUDY.

Model #Parameters Avg.
%Acc.

Compiled Binaries
File Size .text Size

ResNet50 [29] 23.5M 91.34 0.3-90.7M 80.8-215.7K
GoogLeNet [78] 5.5M 89.68 6.0-21.4M 221.5-337.9K

DenseNet121 [65] 7.0M 87.53 8.9-27.3M 427.3-844.5K
LeNet [45] 3.2K 98.50 78.0-90.0K 17.7-25.0K

DCGAN [67] 3.6M - 13.7M 42.4K

of our knowledge, they represent the best DL compilers with
a broad application scope and support for various hardware
platforms. Both DL compilers are studied in the standard
setting without any modifications. Sec. II-A has clarified the
high-level workflow of DL compilation.

DNN Models and Datasets. Overall, we use five represen-
tative image classification and generative DNN models for
the study. We pick ResNet50, GoogLeNet, DenseNet121, and
LeNet, four popular image classification models, all of which
are widely-used with varying model structures and a diverse
set of DNN operators. Each of them has up to 121 layers
with up to 23.5M weights. In addition, we also include the
quantized versions of these models to evaluate whether their
robustness against traditional weights-based BFAs still holds
as DNN executables. However, we do not compile quantized
models with Glow, because Glow has no support for them.
As for generative models, we focus on generative adversarial
networks (GANs) as they are the most popular ones. We select
DCGAN, which is the backbone of nearly all modern GANs.

For the image classification models, we train them on three
popular and representative datasets, CIFAR10, MNIST, and
Fashion-MNIST. For DCGAN, we train it on the MNIST
dataset and evaluate its outputs in aspects of image quality
and semantics. These trained models, after being compiled
as executables, are treated as the victim for attacks. With
different compilers and configurations, we have 16 victim
DNN executables as listed in Table III. To acquire trained
DNNs for offline bit searching (Sec. IV-C), we also train each
DNN on ten fake datasets.

Table II lists all seed DNN models, their numbers of
weights and accuracies, as well as the sizes of their compiled
executables and the .text sections. We report that the (vic-
tim) classification models have average accuracies of 91.34%,
89.68%, 87.53%, and 98.50%, respectively, for all datasets.
In terms of file size, Glow-compiled executables are much
smaller than TVM-compiled ones as Glow does not embed
the weights into the executable but instead stores them in a
separate file.

VI. EVALUATION

In this section, we report the evaluation results; we first give
an overview of our key findings.

① Pervasive Vulnerabilities in DNN Executables. All DNN
executables evaluated are pervasively vulnerable to BFAs.
With reverse engineering and extensive manual efforts, we also
present the characteristics of the vulnerable bits in Sec. VI-F,

TABLE III
VULNERABLE BITS IN OUR EVALUATED DNN EXECUTABLES. Q DENOTES

QUANTIZED MODELS.

Model Dataset Compiler #Bits #Vuln. %Vuln. %“0→1”
ResNet50 CIFAR10 TVM 311808 8091 2.59 63.92
ResNet50 MNIST TVM 311808 9803 3.14 61.96
ResNet50 Fashion TVM 311808 9585 3.07 58.74

GoogLeNet CIFAR10 TVM 903408 23136 2.56 66.49
GoogLeNet MNIST TVM 903408 22665 2.51 64.94
GoogLeNet Fashion TVM 903408 23375 2.59 62.01

DenseNet121 CIFAR10 TVM 1317424 35109 2.66 62.51
DenseNet121 MNIST TVM 1317424 27705 2.10 70.03
DenseNet121 Fashion TVM 1317424 30205 2.29 68.32
QResNet50 CIFAR10 TVM 728712 15846 2.17 55.05
QGoogLeNet CIFAR10 TVM 1384904 11588 0.84 54.75
QDenseNet121 CIFAR10 TVM 2666280 13944 0.52 57.73

LeNet MNIST TVM 68800 1733 2.52 60.70
DCGAN MNIST TVM 220560 16634 7.54 64.64
ResNet50 CIFAR10 Glow 414600 10296 2.48 66.24
ResNet50 MNIST Glow 414600 9614 2.32 66.35

1) #Bits denotes the total number of bits in the .text section.
2) #Vuln. is the number of vulnerable bits identified, %Vuln denotes the
percentage of vulnerable bits in the total bits, i.e., #Vuln/#Bits.
3) %“0→1” indicates the percentage of flipping from bit 0 to 1.

illustrating that vulnerable bits can originate from various
binary code patterns that commonly exist in DNN executables.

② Effective & Stealthy Corruption. DNN executables are
easily corrupted by BFAs flipping a single bit. This greatly
enhances the stealthiness of our attack while also reducing its
cost, making it more practical for real-world adversaries. In
contrast, prior works often need to mutate a dozen bits (16.73
on average) to achieve the same attack goal.

③ Versatile Exploitation. We also show that DNN executa-
bles can be exploited with various end goals. In addition to
contemporary works that downgrade DNN classifier accuracy
via BFA, we also demonstrate attacking generative models
via BFA (see evaluations in Sec. VI-C). This reveals unseen,
severe consequences of our attack, such as poisoning down-
stream models in critical sectors trained on generated images.

④ Transferable “Superbits.” As mentioned in Sec. IV, our
(relatively weak) attacker locally constructs and profiles a set
of DNN executables to identify superbits in them. We find
that these bits are often (∼70%; see Sec. VI-E) transferable
to the victim executable. Our observation calls for low-level,
binary-centric security analysis and mitigation against BFAs,
which today’s techniques (mainly focusing on model weights
and deployed in DL frameworks [85], [91]) are yet to cover.

⑤ Practical Exploitation. Our attack is successfully demon-
strated on mainstream DDR4 DRAMs over all studied victim
executables, whereas previous DNN-oriented BFAs only show
their attack on DDR3 DRAMs.

We elaborate on our evaluation results below.

A. ① Pervasive Vulnerabilities

DNN executables compiled by mainstream DL compilers
are extensively vulnerable under BFAs. Table III shows the
list of binaries we have trained, compiled, and evaluated based
on our study setup in Sec. V.

Overall, for both classifiers and generative models, they
have from about 0.52% to 7.54% (weighted average 2.00%) of

8

0.0 0.2 0.4 0.6 0.8 1.0
Relative Location in .text

TVM

Glow 1
3
5

%
Vu

ln
. B

its

Fig. 4. Distribution of vulnerable bits in DNN executables.

their .text region bits vulnerable to BFA where flipping any
one of the bits leads to a successful attack. Here, we consider
a bit vulnerable if flipping it causes an image classification
model to degrade to a random guesser (i.e., the accuracy drops
to 1

#classes). For a GAN model, if, after flipping a bit, 85%
of its outputs’ labels changed or either the Fréchet Inception
Distance (FID) [33] or average Learned Perceptual Image
Patch Similarity (LPIPS) [90] score becomes higher than their
85th percentile values, we consider the bit vulnerable.

For quantized models, surprisingly, we did not find them
having significantly smaller attack surfaces than their full-
precision counterparts, in contrast to what prior works have
suggested [88], [69]. Although they have lower percentages
of vulnerable bits, their .text regions are significantly larger
due to their more complicated structures (e.g., quantization and
dequantization layers at the beginning and end of the model,
and requantization layers between certain operators). As a
result, the actual number of vulnerable bits is still substantial
(over 10,000), leaving plenty of room for attacks.

Additionally, we report that the vulnerable bits are dis-
tributed throughout the entire .text region of a binary rather
than being concentrated in a small region. The distribution of
vulnerable bits in the .text region is plotted in Fig. 4, where
the darkness of the color indicates the portion of vulnerable
bits found in the corresponding address range inside .text.
For Glow, the regions near the beginning and end of the
.text region are mainly auxiliary code not involved in model
inference, so we leave these regions out from evaluation.
Other than that, for both TVM and Glow, vulnerable bits are
distributed relatively evenly inside .text.

From an operator/layer viewpoint, we also show in Table VI
the top 10 operators containing the vulnerable bits in the
ResNet50 CIFAR10 executable compiled by TVM (“Default
Executable” columns), where no single operator dominates
the existence of vulnerable bits. As TVM fuses neighboring
operators wherever possible (indicated by the “+” in the table),
we further build and analyze the same executable with fusion
disabled (“With Fusion Disabled” columns); this executable
confirms our observation as well. In general, these widely
spread out vulnerable bits translates to higher success rates for
attackers, as the “one bit per page” constraint (see Sec. IV-B)
will have much less impact on them.

In Table IV, we explore the attack surface of BFA on
different executable variants compiled by TVM (which are
unsupported by Glow). We compare the default executable
with two other variants: (1) No Fusion, which turns off the
fusion and other optimizations in TVM, and (2) No AVX2,
which turns off AVX2 instructions in the executable. Overall,
we find that different variants may have different percentages

TABLE IV
VULNERABILITY STATISTICS OF DIFFERENT EXECUTABLE VARIANTS

COMPILED BY TVM.

Model Dataset Variant #Bits #Vuln %Vuln %“0→1”
ResNet50 CIFAR10 Default 311808 8091 2.59 63.92
ResNet50 CIFAR10 No Fusion 809744 27328 3.37 58.78
ResNet50 CIFAR10 No AVX2 268992 10999 4.09 64.27
ResNet50 MNIST Default 311808 9803 3.14 61.96
ResNet50 MNIST No Fusion 809744 26942 3.33 55.94
ResNet50 MNIST No AVX2 268992 11832 4.40 64.24

1) #Bits denotes the total number of bits in the .text section.
2) #Vuln. is the number of vulnerable bits identified, %Vuln denotes the percentage
of vulnerable bits in the total bits, i.e., #Vuln/#Bits.
3) %“0→1” indicates the percentage of flipping from bit 0 to 1.

TABLE V
TOP 10 MOST COMMON FLIP TYPES IN AVX2 AND NON-AVX2 BINARIES.

“PCT.” STANDS FOR PERCENTAGE.

Rank AVX2 Binaries Non-AVX2 Binaries
Instruction (Flip Type) Pct. (%) Instruction (Flip Type) Pct. (%)

1 VMOVUPS (Data) 12.34 MULPS (Opcode) 16.96
2 MOV (Data) 8.82 MULPS (Data) 15.96
3 ADD (Data) 6.23 ADDPS (Opcode) 9.12
4 VBROADCASTSS (Data) 5.83 MOV (Data) 8.02
5 VXORPS (Data) 5.17 MOVAPS (Opcode) 5.63
6 VFMADD231PS (Data) 4.88 XORPS (Data) 4.88
7 LEA (Data) 4.86 ADD (Data) 4.37
8 VMOVAPS (Data) 3.47 ADDPS (Data) 4.07
9 VADDPS (Opcode) 3.35 MOVAPS (Data) 3.96
10 VADDPS (Data) 3.31 MOVSS (Opcode) 3.78

of vulnerable bits, but this number is at approximate the
same level (2-4%) for all cases. Since the TVM optimization
pipeline simplifies and fuses many operators in the compu-
tational graph [15], the large amount of unfused operators in
an unoptimized executable may introduce more structures vul-
nerable to BFAs, such as loops and exploitable loop variables,
hence more vulnerable bits. On the other hand, turning off
AVX2 replaces all AVX2 instructions in an executable with
simpler SSE instructions. While there will be more instructions
as SSE is less vectorized, the new instructions are shorter,
shrinking the binaries’ .text regions. Also, we noticed that
the opcode bits in these SSE instructions are more “flippable”
than those in AVX2 instructions, i.e., when flipped, an opcode
is more likely to become another valid opcode that is still
valid, as can be seen by comparing the most common flip
types before and after turning off AVX2 in Table V. This
is likely because shorter instructions have a smaller opcode
space, so different opcodes are closer to each other (in terms
of Hamming distance).

B. ② Effective & Stealthy Corruption

As mentioned in the “conditions for vulnerable bits” in
Sec. IV-B, all of our findings are vulnerable bits that can
be used to deplete full DNN model intelligence with only
a single-bit BFA. For example, flipping bit 1 of the byte at
offset 0x1022f6 in the first binary in Table III causes the
model’s prediction accuracy to drop from 87.20% to 11.00%,
equivalent to a random guesser. To the best of our knowledge,
this is the first work to report such single-bit corruptions
in DNN models. We believe the ability to corrupt a model
using one single-bit flip is an important motivation for real-

9

TABLE VI
TOP 10 OPERATORS CONTAINING VULNERABLE BITS IN THE TVM

RESNET50 CIFAR10 EXECUTABLE. “PCT.” STANDS FOR PERCENTAGE.

Rank Default Executable With Fusion Disabled
Operator Pct. (%) Operator Pct. (%)

1 Conv2d + Add + ReLU 0 13.32 Conv2d 2 7.30
2 Conv2d + Add + ReLU 2 10.37 Conv2d 0 6.13
3 Conv2d + Add + Add + ReLU 0 5.96 Conv2d 3 5.51
4 Conv2d + Add + Add + ReLU 2 5.55 Conv2d 10 5.25
5 Conv2d + Add 0 5.39 Conv2d 7 4.90
6 Conv2d + Add + Add + ReLU 1 4.52 Conv2d 13 4.56
7 Conv2d + Add + ReLU 3 4.24 Conv2d 6 3.58
8 Adaptive-avgpool 0 3.78 Conv2d 15 3.28
9 Conv2d + Add + ReLU 10 3.65 Conv2d 4 3.21
10 Conv2d + Add + Add + ReLU 3 3.32 Conv2d 5 3.12

TABLE VII
NUMBER OF VULNERABLE BITS BY OUTPUT CLASS. THE LAST TWO ROWS

ARE GLOW-COMPILED EXECUTABLES WHEREAS THE REST ARE
TVM-COMPILED.

Model Dataset #Vulnerable Bits by Output Class
0 1 2 3 4 5 6 7 8 9

ResNet50 CIFAR10 742 447 3192 881 121 1509 381 67 249 502
ResNet50 MNIST 12 7699 33 17 8 77 14 150 284 1509
ResNet50 Fashion 0 8543 96 6 2 87 71 19 336 425

GoogLeNet CIFAR10 1747 2022 8430 1538 614 1814 1088 918 1290 3675
GoogLeNet MNIST 188 1600 1226 1730 256 2991 2133 526 2062 9953
GoogLeNet Fashion 6165 388 722 302 2989 1123 505 1366 417 9398

DenseNet121 CIFAR10 604 23425 1681 1881 2328 504 1321 234 1913 1218
DenseNet121 MNIST 3563 895 837 4506 6192 335 2027 233 3740 5377
DenseNet121 Fashion 16718 1014 551 1282 152 1945 5402 26 2114 1001
QResNet50 CIFAR10 866 1534 4375 2409 397 3127 1295 488 389 966
QGoogLeNet CIFAR10 3612 165 1707 2336 266 348 394 600 931 1229
QDenseNet121 CIFAR10 1546 3295 1051 2794 1840 74 1021 578 705 1040

ResNet50 CIFAR10 1369 1023 1940 1278 331 2225 496 357 647 630
ResNet50 MNIST 36 7010 47 39 31 102 23 130 305 1891

world attackers because, under the assumption that BFAs are
mostly instantiated using RH, which is a probabilistic process,
it greatly reduces the cost for the attack and increases the
success rate, as we will see in our practical attack experiments
in Sec. IV-B. It also largely reduces the risk of being detected
by the victim (i.e., more stealthy), as the corruption is much
more subtle than the case of multi-bit corruption.

C. ③ Versatile End-Goals

As mentioned earlier, the consequences BFA can cause are
not limited to downgrading a classification model’s accuracy.
We observe that BFA also shows a high potential to manipulate
DNN executables’ prediction results or generative outputs, and
this phenomenon also extensively exists in our study.

First, in terms of classification models, Table VII shows a
summary of different predicted classes that can be controlled
by single-bit BFA. When a model is pinned to a class by BFA,
it has the highest probability of outputting that class for any
input, granting attackers the ability to control model outputs.
We notice that, for most of the models in the list, there are
frequently hundreds or even thousands of vulnerable bits that
can pin the model to each of the classes, although in rare
cases, there will be few or no bits available for a specific class.
While this may not be a targeted BFA (T-BFA) in the standard
sense [14] due to its non-deterministic nature, we should point
out that no existing work has demonstrated practical T-BFA
that can pin a model’s output using one bit, whereas all of our

(a) Before BFA (b) Three different types of outcomes after BFA
Fig. 5. Output samples of DCGAN before and after BFA.

findings are achieved via single-bit BFA. Thus, we see this as
a “high risk, high return” strategy for sophisticated attackers.

For GAN, Fig. 5(a) shows the original output of our
DCGAN model before being corrupted by BFA, and Fig. 5(b)
shows three different types of outcomes the model produces
when given the same input after flipping three different bits
in the model. Among the three types, the first one may be the
most interesting: not only does it almost completely change
the semantics of the output, but it also pins the model output to
only two semantic classes (1 and 9). Also notice the two styles
of the 9’s in the output sample: they suggest that this flip is not
simply causing duplications in the output, but is manipulating
the model’s learned semantics as well. Then, the second
type degrades the output image quality while preserving the
semantics, and the third destroys both the semantics and image
quality. If the attacked GAN is used for augmenting a DNN
model, in the first case, it is anticipated that the augmented
DNN will tend to predict “1” or “9” for any input since its
training data are dominated by 1’s and 9’s. In the other two
cases, the augmented DNN should also be largely downgraded
because its training data are less recognizable.

Out results review a new attack angle and its severe conse-
quence: generative models are often adopted for data augmen-
tation (e.g., for medical image analysis [79], [28], [23], [11],
[55]), and manipulating the generated images can introduce
bias into the augmented datasets, making the augmented DNN
biased. For example, by leveraging BFA, we can force a
chest X-ray image generator to always generate benign X-
ray images. Then, the DNN augmented using this manipulated
dataset will tend to predict most inputs as “benign.”

D. ④ Superbits

We find some vulnerable bits transferable among different
DNN executable even though they are trained on different
datasets but just sharing the same DNN structure; we call these
bits superbits. In Table VIII, we summarize the existence of
superbits over different models: for each model structure, we
train and compile three executables, each on a different dataset
(CIFAR10, MNIST, or Fashion-MNIST); after obtaining the
executables, we search for superbits across all 3 executables
sharing the same DNN structure. Generally, comparing with
the results in Table III, we find that about half of the vulnerable
bits found in one DNN executable trained on one dataset also
exist in the executables trained on the other two datasets.

Since a superbit is located at the same offset and has the
same flip direction in all executables that share it, an attacker
will find it much more convenient to launch BFAs if she
can find superbits shared by the victim DNN executable. In

10

TABLE VIII
STATISTICS OF SUPERBITS IN DNN EXECUTABLES OF THE SAME

STRUCTURE BUT DIFFERENT WEIGHTS.
Structure Datasets & Weights Compiler #Superbits %Superbits
ResNet50 CIFAR10 / MNIST / Fashion TVM 4334 1.61

GoogLeNet CIFAR10 / MNIST / Fashion TVM 12422 1.38
DenseNet121 CIFAR10 / MNIST / Fashion TVM 18349 1.39
QResNet50 CIFAR10 / MNIST / Fashion TVM 7579 1.04
QGoogLeNet CIFAR10 / MNIST / Fashion TVM 1994 0.14
QDenseNet121 CIFAR10 / MNIST / Fashion TVM 6517 0.24

ResNet50 CIFAR10 / MNIST / Fashion Glow 5223 1.26

Baseline

Fig. 6. Relation between the number of fake datasets (Sec. IV-C) used and
the accuracy of the superbits found, shown as the average for all attacked
executables with its 95% confidence interval. The baseline case of not using
fake datasets (“0”) is also included.

fact, we have shown in Sec. IV-B that it is indeed feasible to
find superbits that are highly likely to be shared by a set of
DNN executables the attacker possesses plus the victim DNN
executable, and we described a systematic search method to
achieve this effectively and efficiently. In Sec. VI-E, we further
use the existence of superbits and our novel search method to
launch practical BFAs without relying on knowledge about the
victim model’s weights. Finally, in our case study in Sec. VI-F,
we will provide more insights into why they can effectively
disrupt the behavior even of different DNN executables.

E. ⑤ Practical Attack

This section demonstrates that practical BFAs can be
launched against DNN executables. We follow the steps in
Blacksmith [40] to assess the practical exploitations, and run
our experiments on a server with an Intel i7-8700 CPU and a
Samsung 8GB DDR4 DRAM module without any hardware
modifications. Before launching our attacks, we extend Black-
smith to launch our RH attacks on DDR4 more smoothly:
we find Blacksmith’s timing function rather easily affected
by noise in our preliminary experiments, making it hard to
distinguish between DRAM accesses with and without row
conflicts. We thus replace the timing function with the one
in TRRespass, which we find to be more resilient to noise
on our platform. We also replace Blacksmith’s Hammertime
framework [80] to adapt to our work. Our practical attack
experiment covers in total 9 different DNN executables to
evaluate the attack effectiveness on different model structures,
datasets, and compilers. For each executable, we launch the
attack five times and collect the results.

We first perform memory templating (Sec. IV-B) by running
Blacksmith with default settings to obtain memory templates
in a 256MB memory region. The sweep identified a total of
17,366 flippable bits in the region, 8,855 of which are 0→1
flips. We then obtain the superbits SE using the search method

TABLE IX
STATISTICS OF THE 5 ATTACK RUNS ON 9 EXECUTABLES. THE LAST ROW

IS FOR GLOW-COMPILED EXECUTABLE WHEREAS THE REST ARE FOR
TVM-COMPILED.

Model Dataset #Flips #Crashes %Acc. Change
ResNet50 CIFAR10 1.4 0.0 87.20 → 10.00

GoogLeNet CIFAR10 1.4 0.0 84.80 → 10.00
DenseNet121 CIFAR10 1.0 0.0 80.00 → 11.40
DenseNet121 MNIST 1.2 0.0 99.10 → 11.20
DenseNet121 Fashion 1.2 0.0 92.50 → 10.60
QResNet50 CIFAR10 1.6 0.0 86.90 → 9.60
QGoogLeNet CIFAR10 1.4 0.0 84.60 → 11.20
QDenseNet121 CIFAR10 1.6 0.0 78.50 → 10.20

ResNet50 CIFAR10 1.4 0.0 78.80 → 10.00

in Sec. IV; these are the bits we will attempt to flip during our
attacks. We report that the local profiling stage takes on av-
erage 41.4 hours per executable (not adapted for parallelism).
Note that unlike prior BFAs that re-do the profiling for every
victim DNN, our profiling is a one-time effort and applies to
all same-structure-different-weights DNNs.

To determine the number of “fake datasets” used to calculate
SE (Sec. IV-C), we plot in Fig. 6 the relationship between the
number of fake datasets used and the accuracy of the superbits
found, i.e., how many bits in SE are actually also vulnerable
in the victim executable. For comparison, we also show the
baseline case where the attacker does not use fake datasets, but
simply selects random bits as superbits to use in the attack. We
observed that, the attacker is able to confidently find superbits
when using 8 or more fake datasets (with ∼70% accuracy), and
the confidence interval is the tightest at 10 datasets. Randomly
selected bits have significantly lower probabilities (∼2%) of
being transferable to the victim executable. We thus use 10
fake datasets to obtain SE .

The statistics of the attack results are shown in Table IX.
On average, we successfully degrade each victim executable
to a random guesser (prediction accuracy of 10%) with 1.4
flip attempts while causing no crashes at all, regardless of the
original prediction accuracy of the victim executable. In the
case of DenseNet121 on CIFAR10, we consistently succeed
with just one flip attempt in all five runs, decreasing its accu-
racy from 80.00% to 11.40%, ruining its inference capabilities.
Somewhat surprising are the results for quantized models.
Recall that, quantized models are considered substantially
harder to attack with BFA, requiring 2× to 23× more flips
for complete intelligence depletion [88]. We however find that,
after being compiled into DNN executables, quantized models
require just 1.4 to 1.6 flips to be successfully attacked, which
is only slightly higher than the figures for full-precision DNN
executables. The worst case was found in one run for the
quantized DenseNet121 model, where four flips were required
before successfully achieving the goal. We compare our results
with existing work in Sec. VII-A. Our observation suggests
that BFA is a severe and practical threat to DNN executables.

F. Case Study

To understand the root causes behind a single-bit flip com-
promising the complete intelligence of a DNN executable as
well as provide inspiration for future countermeasures (more

11

TABLE X
CLASSIFICATION OF MANUALLY ANALYZED BFA CASES.

Bit Type Total Data Flow Control Flow Data Align Inst Align
Non-Superbit 30 13 14 2 1

Superbit 30 5 8 12 1

discussion in Sec. VII-B), we randomly analyze 60 cases,
30 each for non-superbits and superbits, from our previous
results. After an extensive manual study, we list in Table X
four categories of causes for single-bit corruption, including
• Broken Data Flow: the calculation of a specific layer’s input

or output address is corrupted, causing the inputs (outputs)
to be read from (written to) wrong memory regions.

• Broken Control Flow: a condition is changed to be always
false, causing the corresponding calculation branch to be
skipped, producing a large number of incorrect outputs.

• Broken Data Alignment: the offset of memory read/write
instructions is deviated, causing data to be read or written
in an unaligned manner.

• Broken Instruction Alignment: the bit flip converts bytes in
the .text section for alignment purposes into instructions,
causing subsequent instructions to be corrupted.
Our case study reveals common code patterns across models

and datasets. The study also shows why existing defenses
(Sec. VII-A) are not effective: they focus on the protection
of victim model weights and are unable to detect attacks
like ours, which target program parts other than the weights.
Although the analyzed cases come from the same DNN
executable (i.e., LeNet1), in our observation, the results are
applicable to other DNN executables compiled by TVM and
Glow and can offer a comprehensive understanding of the
causes behind successful BFA. We now discuss one repre-
sentative case for each category.
Broken Data Flow. We observed many different patterns of
how a single bit flip could break the data flow of model
inference. Here, we provide one example related to the paral-
lelism of DNN executables. Typically, a DNN executable runs
in parallel where multiple threads are launched to perform
computation for a DNN layer, each thread computing a portion
of the output. When a thread is initialized, its corresponding
output offset is calculated using its thread ID.

4F 8D 34 64
49 C1 E6 06
4C 03 71 10

0xC9
0xCD
0xD1

lea r14, [r12+r12*2]
shl r14, 6
add r14, [rcx+10h]

4F AD
34 64

49 C1 E6 06
4C 03 71 10

0xC9
0xCB

0xCD
0xD1

lodsq ;; load qword in RAX
xor al, 64h
;; r14 not initialized
shl r14, 6
add r14, [rcx+10h]

(a) Assembly code before BFA.

(b) Assembly code after BFA.

Addr Opcode bytes x86 assembly instruction

Fig. 7. Case 1: the multi-thread data flow is broken.

Consider the example in Fig. 7, where r14 is a register
storing the offset and [rcx+10h] one storing the base ad-
dress of the output. Before BFA, the offset (r14) is calculated
as base address+r12*192 (r12 stores the thread ID).

However, after BFA, the instruction at 0xC9 is split into two
instructions irrelevant to r14 (at 0xC9 and 0xCB), resulting
in all threads simultaneously writing to the same output region.
Broken Control Flow. The number of threads launched by
DNN executables is determined by a predefined environment
variable. When there are more threads than required by a
DNN layer (e.g., a convolutional layer), redundant threads will
directly jump to the function end after thread ID checking.

Case 2

83 F8 28
0F 4D C2
39 F0
0F 8D FA 00+
00 00

0x70
0x73
0x76
0x78

cmp eax, 28h ;; max ID
cmovge eax, edx ;; edx=28h
cmp eax, esi ;; esi<28h
jge func_end

83 FC 28
0F 4D C2
39 F0
0F 8D FA 00+
00 00

0x70
0x73
0x76
0x78

cmp esp, 28h ;; true
cmovge eax, edx ;; true
cmp eax, esi ;; true
jge func_end ;; exit

(a) Assembly code before BFA.

(b) Assembly code after BFA.

Addr Opcode bytes x86 assembly instruction

Fig. 8. Case 2: the control flow is broken.

This check, however, is vulnerable to BFA. As shown in
Fig. 8, the instruction at 0x70 originally compares 0x28 with
eax; after BFA, it compares with esp which always stores a
very large stack address. Thus, the following comparisons are
always true, making all threads skip the execution.
Broken Data Alignment. In the computation of DNN exe-
cutables, all floating-point numbers are represented as 4-byte
aligned data. However, such alignment can be easily violated
with even only a single-bit flip. As shown in Fig. 9, the
vmovups instruction will move 32 bytes of data from the
ymm1 register to the memory. The BFA increases the offset of
the target memory address by 2 bytes, resulting in unaligned
data written into memory. The next time the data is read from
memory in an aligned manner, the corrupted data will be
interpreted as an extremely large float value (e.g., 1e8). These
large numbers will propagate in the process of DNN model
inference and dominate the final result.

C5 FC 11+
4C 32 C2

Case 3

C5 FC 11+
4C 32 C0

vmovups ymmword ptr [rdx+rsi-40h], ymm1

(a) Assembly and memory before BFA.

(b) Assembly and memory after BFA.

Opcode bytes x86 assembly instruction

Memory 20 4D 31 3F ...
0x3F314D20 0.692583

vmovups ymmword ptr [rdx+rsi-3Eh], ymm1

Memory 56 BF 20 4D ...

0x4D20BF56 1.68556e+08
31 3F

Fig. 9. Case 3: the data alignment is broken.

Broken Instruction Alignment. During compilation, nop
instructions are often used to align instruction addresses.
Similar cases are observed in DNN executables. Consider the
example in Fig. 10, a nop instruction is used to align the next
instruction to address 0xD0. Nevertheless, after a single-bit
flip, the nop instruction is converted into a shorter variant,
leaving its last byte (at 0xCF) being recognized as the start of

12

Case 4

0F 1F 84 00+
00 00 00 00
C5 FC 10 84+
01 30 FF FF+
FF

0xC8

0xD0

nop word ptr [rax+rax+0h]

vmovups ymm0, ymmword ptr
[rcx+rax-0D0h]
;;load data to ymm0

0F 1F 86 00+
00 00 00
00 C5
FC
10 84 01 30+
FF FF FF

0xC8

0xCF
0xD1
0xD2

nop dword ptr [rsi+0h]
;;nop with varied length
add ch, al
cld
adc [rcx+rax-0D0h], al
;;leaving ymm0 uninitialized

(a) Assembly code before BFA.

(b) Assembly code after BFA.

Addr Opcode bytes x86 assembly instructions

Fig. 10. Case 4: the instruction alignment is broken.

TABLE XI
A COMPARISON OF ATTACK PERFORMANCE WITH PRIOR WORKS. FOR

MITIGATIONS, #, G#, AND DENOTE NO, PARTIAL, AND FULL
MITIGATION, RESPECTIVELY.

Work Attack
Target

Avg.
#Flips

Mitigable by
Q [92] A [85] D [13] W [49] N [50]

BFA [69] Weights 14.3 G# G#
T-BFA (N-to-1) [71] Weights 23.63 G# G#
DeepHammer [88] Weights 12.25 G# G#
Ours Structure 1.4 # # # # #

an add instruction. The instruction alignment is thus broken,
leading to an uninitialized register (ymm0) being used in the
computation. In this case, the presence of nan values in ymm0
directly destroys subsequent DNN model inference.

VII. DISCUSSION

A. Comparison Against Existing Attacks and Defenses

Existing Attacks. We list in the rows of Table XI the
attack performance of prior state-of-the-art BFAs against DNN
models running on DL frameworks (data from original papers),
as well as their mitigability by existing defenses. We include
BFA [69] as the standard gradient-based method for flipping
weight bits, T-BFA [71] as its targeted variant, and DeepHam-
mer [88] as its RH-specific counterpart. We find that these
attacks require 12.25 to 23.63 flips on average to achieve the
attack goals, while our method only needs 1.4 flips.
Existing Defenses. We also compare our attack (together
with other attacks) against existing defenses in the columns
of Table XI. We include representative works in both the
passive and active defense categories. Passive defenses like
quantization [92] and Aegis [85] transform the protected
models to enhance their robustness against BFAs; they thus
only partially mitigate weights-based attacks by increasing
the number of required flips. The use of randomized multi-
exit structures in Aegis also makes it inapplicable to DNN
executables because they are unsupported by DL compilers.
And as shown in Sec. VI-E, change in model precision
(quantized or not) does not affect our attack performance.
On the other hand, active defenses aim to detect BFAs as
attackers are making attempts. DeepAttest [13] injects fin-
gerprints into model weights through model fine-tuning and
uses specialized trusted hardware to verify it during inference.
Weight-encoded detection [49] and NeuroPots [50] determine
important weights using gradients, encode keys into them,

and extract the keys at runtime for verification. While these
methods can detect existing weights-based BFAs which also
use gradient information to pick weights to flip, our attack
does not modify weights or rely on gradients, and thus is not
detectable. In addition, porting these active defenses to DNN
executables poses challenges, as their runtime verification
mechanisms are compiled into DNN executables as well and
may also become attackers’ targets. As a result, our attack
slips past all existing defenses and calls for new defense
mechanisms tailored for DNN executables.

B. Future Defense Directions

Based on our findings, we discuss potential defenses on two
levels. First, we anticipate the potential of using existing RH
defenses [41], [32], [83], [20] to lower BFA risks specific to
this paper’s threat model which assumes a weak attacker with
limited knowledge and constrained by current RH techniques.
A classic defense is to install ECC memory modules. How-
ever, this only lowers the risks of BFA without eliminating
them [18], and platforms like embedded devices that do not
support ECC memory may still be vulnerable [82]. Compile-
time code obfuscation can be designed and implemented
to prevent attackers from producing same-structure-different-
weights executables for local profiling, although it does not
protect against cases where public model executables are used
or where attackers have full knowledge of the victim, as
assumed by existing works [88], [69], [71]. MLaaS providers
may also enforce stricter security policies (e.g., restricting the
eviction of vulnerable memory pages) to prevent current RH
techniques from working, but performance or benefits from
resource sharing may get discounted.

On a higher level, however, BFA on DNN executables
should be studied independently of the underlying error in-
jection techniques like RH, since diverse sources ranging
from a depleted power supply to high-energy light beams
can also trigger bit flips [7]. For traditional DNN models
on DL frameworks, efforts have been made to protect them
against generic fault injection attacks on weights [30], [85],
[47], [50]. But as we have discussed in Sec. VII-A, they
are either inapplicable to DNN executables or cannot protect
against structure-based attacks on DNN executables. We thus
envision that low-level, binary-centric security mechanisms
are needed to substantially reduce the attack surface. Since
flipping vulnerable bits mainly corrupts data and control flow
(as discussed in Sec. VI-F), yet another potential defense
might be implementing DNN-executable-specific data/control
flow integrity checks [3], [12]. Currently, some work has
been done to detect abnormal neuron activation in DNN
executables at runtime by comparing them with reference
values or computing gradient-based metrics [16], but it is still
unclear how BFA defenses can benefit from it, and how control
flow integrity checks should be designed for DNN executables.
In summary, designing comprehensive BFA defense schemes
for DNN executables is still an open problem, and we leave
it as future work.

13

C. Generality and Extension

Aligned with prior BFAs [88], [35], this work mostly
studies computer vision models; some other types of DNN
models are not discussed. For instance, NLP models may
contain recurrent structures such as RNN and long short-
term memory (LSTM) [34] to handle sequential inputs. We
tentatively tried to evaluate our methods on these models
but found that both TVM and Glow show immature support
for them. However, our method should generalize to these
other models since the vulnerable bits and related binary code
patterns are model/operator-agnostic (see Sec. VI-F).

While this paper mainly focuses on the x86 architecture,
our provisional qualitative results show that DNN executables
compiled for other instruction set architectures (ISAs) like
ARM also manifest similar BFA vulnerabilities. As various
architectures rapidly gain popularity [2], we plan to fully
extend our study to non-x86 architectures in the future.

VIII. RELATED WORK

To date, RH attacks have been successfully applied in
a wide range of exploitations and in different directions,
including Linux privilege escalation [76], browser-based re-
mote attacks [27], mobile-platform-specific attacks [82], and
others [42], [40], [18]. Gruss et al. [26] proposed the idea
of hammering in the code region of specific executables to
corrupt their execution logic. While we also target executable
code regions, we specialize to the case of DNN executables
and provide an automated searcher for vulnerable bits (details
in Sec. IV). Meanwhile, the attacks have also led to the rise of
corresponding security mitigation techniques [41], [32], [83],
[20]. In DDR4 DRAM, the Target Row Refresh (TRR) has
been widely adopted by manufacturers as an on-chip mitiga-
tion for RH attacks, but research has shown that the protection
is incomplete [24], [40]. GuardION [83] is a software-based
defense designed to prevent DMA-based RH attacks on ARM
platforms primarily running Android OS. Copy-on-Flip [20]
utilizes the error correction events generated by systems with
ECC memory to detect and mitigate RH attacks, at the cost
of performance overhead.

For BFAs targeting DNN models, Rakin et al. [69] proposed
a progressive bit search algorithm to find the most vulnerable
bits in the weights of a model: intra-layer bit searching is
performed for each layer and the top weight bits with the
largest gradients are recorded. The most vulnerable bits across
all layers are then obtained as the model-wise top bits to
flip. Building on this, Yao et al. [88] proposed DeepHammer
to consider RH-specific constraints and use RH to flip the
identified bits. A targeted variant of the progressive search
method was put forward to achieve more advanced attack goals
using RH on DNN models [71]. Rakin et al. also proposed to
steal DNN model weights with RH [68]. We have covered
related work on defending DNN models against BFAs in
Sec. VII-A and Sec. VII-B.

IX. CONCLUSION

We launch the first systematic study on the attack surface
of BFA on DNN executables. We show that DNN executables
are pervasively vulnerable to BFAs, and can be exploited
in a highly practical manner. Our findings call for security
mechanisms in future DL compilation toolchains.

ACKNOWLEDGEMENT

The HKUST authors were supported in part by an
NSFC/RGC JRS grant under the contract N HKUST605/23
and an RGC CRF grant under the contract C6015-23G. The
authors would also like to thank Patrick Jattke for providing
data and suggestions on the use of Blacksmith.

REFERENCES

[1] Research Artifact. https://sites.google.com/view/exe-single-bit-bfa.
[2] Arm’s growing cloud server momentum. https://www.forbes.com/sites/

stevemcdowell/2023/02/26/arms-growing-cloud-server-momentum,
2023.

[3] Martı́n Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-
flow integrity principles, implementations, and applications. ACM
Transactions on Information and System Security (TISSEC), 13(1):1–
40, 2009.

[4] Amazon. Amazon SageMaker Neo uses Apache TVM for performance
improvement on hardware target. https://aws.amazon.com/sagemaker/
neo/, 2021.

[5] Jiawang Bai, Baoyuan Wu, Yong Zhang, Yiming Li, Zhifeng Li, and
Shu-Tao Xia. Targeted attack against deep neural networks via flipping
limited weight bits. arXiv preprint arXiv:2102.10496, 2021.

[6] Pierre Baldi and Peter J Sadowski. Understanding dropout. Advances
in neural information processing systems, 26, 2013.

[7] Alessandro Barenghi, Luca Breveglieri, Israel Koren, and David Nac-
cache. Fault injection attacks on cryptographic devices: Theory, practice,
and countermeasures. Proceedings of the IEEE, 100(11):3056–3076,
2012.

[8] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. Csi nn:
reverse engineering of neural network architectures through electromag-
netic side channel. In Proceedings of the 28th USENIX Conference on
Security Symposium, pages 515–532, 2019.

[9] Jakub Breier, Xiaolu Hou, Dirmanto Jap, Lei Ma, Shivam Bhasin,
and Yang Liu. Practical Fault Attack on Deep Neural Networks. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’18, pages 2204–2206. Association for
Computing Machinery.

[10] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901,
2020.

[11] Francesco Calimeri, Aldo Marzullo, Claudio Stamile, and Giorgio
Terracina. Biomedical data augmentation using generative adversarial
neural networks. In Artificial Neural Networks and Machine Learning–
ICANN 2017: 26th International Conference on Artificial Neural Net-
works, Alghero, Italy, September 11-14, 2017, Proceedings, Part II 26,
pages 626–634. Springer, 2017.

[12] Miguel Castro, Manuel Costa, and Tim Harris. Securing software by
enforcing data-flow integrity. In Proceedings of the 7th symposium on
Operating systems design and implementation, pages 147–160, 2006.

[13] Huili Chen, Cheng Fu, Bita Darvish Rouhani, Jishen Zhao, and Farinaz
Koushanfar. DeepAttest: An End-to-End Attestation Framework for
Deep Neural Networks. In 2019 ACM/IEEE 46th Annual International
Symposium on Computer Architecture (ISCA), pages 487–498.

[14] Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar. Proflip:
Targeted trojan attack with progressive bit flips. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 7718–
7727, 2021.

14

https://sites.google.com/view/exe-single-bit-bfa
https://www.forbes.com/sites/stevemcdowell/2023/02/26/arms-growing-cloud-server-momentum
https://www.forbes.com/sites/stevemcdowell/2023/02/26/arms-growing-cloud-server-momentum
https://aws.amazon.com/sagemaker/neo/
https://aws.amazon.com/sagemaker/neo/

[15] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,
Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze,
et al. {TVM}: An automated end-to-end optimizing compiler for deep
learning. In 13th USENIX OSDI, pages 578–594, 2018.

[16] Yanzuo Chen, Yuanyuan Yuan, and Shuai Wang. OBSAN: An Out-Of-
Bound Sanitizer to Harden DNN Executables. In NDSS 2023.

[17] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen,
John Tran, Bryan Catanzaro, and Evan Shelhamer. cuDNN: Efficient
primitives for deep learning. arXiv preprint arXiv:1410.0759, 2014.

[18] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and Herbert Bos.
Exploiting correcting codes: On the effectiveness of ecc memory against
rowhammer attacks. In 2019 IEEE Symposium on Security and Privacy
(SP), pages 55–71. IEEE, 2019.

[19] TVM Community. Tvm deep learning compiler joins
apache software foundation. https://tvm.apache.org/2019/03/18/
tvm-apache-announcement, 2019.

[20] Andrea Di Dio, Koen Koning, Herbert Bos, and Cristiano Giuffrida.
Copy-on-Flip: Hardening ECC Memory Against Rowhammer Attacks.
In Proceedings 2023 Network and Distributed System Security Sympo-
sium. Internet Society.

[21] Robert Elder. What causes bit flips in computer memory? https://blog.
robertelder.org/causes-of-bit-flips-in-computer-memory/#row-hammer,
2023.

[22] Gianni Franchi, Andrei Bursuc, Emanuel Aldea, Séverine Dubuisson,
and Isabelle Bloch. Tradi: Tracking deep neural network weight distri-
butions. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XVII 16, pages
105–121. Springer, 2020.

[23] Maayan Frid-Adar, Idit Diamant, Eyal Klang, Michal Amitai, Jacob
Goldberger, and Hayit Greenspan. Gan-based synthetic medical image
augmentation for increased cnn performance in liver lesion classification.
Neurocomputing, 321:321–331, 2018.

[24] Pietro Frigo, Emanuele Vannacc, Hasan Hassan, Victor Van Der Veen,
Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
Trrespass: Exploiting the many sides of target row refresh. In 2020
IEEE Symposium on Security and Privacy (SP).

[25] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. arXiv preprint arXiv:1412.6572,
2014.

[26] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas
Juffinger, Sioli O’Connell, Wolfgang Schoechl, and Yuval Yarom.
Another Flip in the Wall of Rowhammer Defenses. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 245–261.

[27] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowhammer.
js: A remote software-induced fault attack in javascript. In Detection
of Intrusions and Malware, and Vulnerability Assessment: 13th Interna-
tional Conference, DIMVA 2016, San Sebastián, Spain, July 7-8, 2016,
Proceedings 13, pages 300–321. Springer, 2016.

[28] Changhee Han, Hideaki Hayashi, Leonardo Rundo, Ryosuke Araki,
Wataru Shimoda, Shinichi Muramatsu, Yujiro Furukawa, Giancarlo
Mauri, and Hideki Nakayama. Gan-based synthetic brain mr image
generation. In 2018 IEEE 15th international symposium on biomedical
imaging (ISBI 2018), pages 734–738. IEEE, 2018.

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In CVPR, pages 770–778, 2016.

[30] Zhezhi He, Adnan Siraj Rakin, Jingtao Li, Chaitali Chakrabarti, and
Deliang Fan. Defending and Harnessing the Bit-Flip Based Adversarial
Weight Attack. In 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 14083–14091. IEEE.

[31] Kevin Hector, Pierre-Alain Moëllic, Jean-Max Dutertre, and Mathieu
Dumont. Fault injection and safe-error attack for extraction of embedded
neural network models. In European Symposium on Research in
Computer Security, pages 644–664. Springer, 2023.

[32] Nishad Herath and Anders Fogh. These are not your grand daddys cpu
performance counters–cpu hardware performance counters for security.
Black Hat Briefings, 2015.

[33] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard
Nessler, and Sepp Hochreiter. Gans trained by a two time-scale
update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

[34] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 1997.

[35] Sanghyun Hong, Pietro Frigo, Yigitcan Kaya, Cristiano Giuffrida, and
Tudor Dumitras. Terminal brain damage: Exposing the graceless
degradation in deep neural networks under hardware fault attacks. In
USENIX Security Symposium, pages 497–514, 2019.

[36] Xing Hu, Ling Liang, Shuangchen Li, Lei Deng, Pengfei Zuo, Yu Ji,
Xinfeng Xie, Yufei Ding, Chang Liu, Timothy Sherwood, et al. Deep-
sniffer: A dnn model extraction framework based on learning architec-
tural hints. In ASPLOS, pages 385–399, 2020.

[37] Texas Instruments. The AM335x microprocessors support TVM.
https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/
Foundational Components/Machine Learning/tvm.html, 2021.

[38] Intel. MKL-DNN for scalable deep learning. https://software.intel.com/
en-us/articles/introducing-dnn-primitives-in-intelr-mkl, 2017.

[39] Animesh Jain, Shoubhik Bhattacharya, Masahiro Masuda, Vin Sharma,
and Yida Wang. Efficient execution of quantized deep learning models:
A compiler approach. arXiv preprint arXiv:2006.10226, 2020.

[40] Patrick Jattke, Victor Van Der Veen, Pietro Frigo, Stijn Gunter, and
Kaveh Razavi. Blacksmith: Scalable rowhammering in the frequency
domain. In 2022 IEEE Symposium on Security and Privacy (SP), pages
716–734. IEEE, 2022.

[41] Dae-Hyun Kim, Prashant J Nair, and Moinuddin K Qureshi. Architec-
tural support for mitigating row hammering in dram memories. IEEE
Computer Architecture Letters, 14(1):9–12, 2014.

[42] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping
bits in memory without accessing them: An experimental study of
dram disturbance errors. ACM SIGARCH Computer Architecture News,
42(3):361–372, 2014.

[43] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom.
Rambleed: Reading bits in memory without accessing them. In 2020
IEEE Symposium on Security and Privacy (SP), pages 695–711. IEEE,
2020.

[44] Chris Lattner and Vikram Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In Proceedings of
the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization, CGO ’04, pages 75–,
Washington, DC, USA, 2004. IEEE Computer Society.

[45] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[46] Jinsol Lee and Ghassan AlRegib. Gradients as a measure of uncertainty
in neural networks. In 2020 IEEE International Conference on Image
Processing (ICIP), pages 2416–2420. IEEE, 2020.

[47] Yu Li, Min Li, Bo Luo, Ye Tian, and Qiang Xu. DeepDyve: Dynamic
Verification for Deep Neural Networks. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’20, pages 101–112. Association for Computing Machinery.

[48] Moritz Lipp, Michael Schwarz, Lukas Raab, Lukas Lamster,
Misiker Tadesse Aga, Clémentine Maurice, and Daniel Gruss. Netham-
mer: Inducing rowhammer faults through network requests. In 2020
IEEE European Symposium on Security and Privacy Workshops (Eu-
roS&PW), pages 710–719. IEEE, 2020.

[49] Qi Liu, Wujie Wen, and Yanzhi Wang. Concurrent weight encoding-
based detection for bit-flip attack on neural network accelerators. In
Proceedings of the 39th International Conference on Computer-Aided
Design, pages 1–8. ACM.

[50] Qi Liu, Jieming Yin, Wujie Wen, Chengmo Yang, and Shi Sha.
{NeuroPots}: Realtime Proactive Defense against {Bit-Flip} Attacks
in Neural Networks. pages 6347–6364.

[51] Yizhi Liu, Yao Wang, Ruofei Yu, Mu Li, Vin Sharma, and Yida Wang.
Optimizing {CNN} model inference on cpus. In USENIX ATC, pages
1025–1040, 2019.

[52] Zhibo Liu, Yuanyuan Yuan, Yanzuo Chen, Sihang Hu, Tianxiang Li, and
Shuai Wang. Deepcache: Revisiting cache side-channel attacks in deep
neural networks executables. In CCS 2024.

[53] Zhibo Liu, Yuanyuan Yuan, Shuai Wang, Xiaofei Xie, and Lei Ma.
Decompiling x86 Deep Neural Network Executables. In USENIX
Security 2023.

[54] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue, Youshan Miao, Wei
Cui, Wenxiang Hu, Fan Yang, Lintao Zhang, and Lidong Zhou. Rammer:
Enabling holistic deep learning compiler optimizations with rtasks. In
14th USENIX OSDI, pages 881–897, 2020.

15

https://tvm.apache.org/2019/03/18/tvm-apache-announcement
https://tvm.apache.org/2019/03/18/tvm-apache-announcement
https://blog.robertelder.org/causes-of-bit-flips-in-computer-memory/#row-hammer
https://blog.robertelder.org/causes-of-bit-flips-in-computer-memory/#row-hammer
https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/Machine_Learning/tvm.html
https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/Machine_Learning/tvm.html
https://software.intel.com/en-us/articles/introducing-dnn-primitives-in-intelr-mkl
https://software.intel.com/en-us/articles/introducing-dnn-primitives-in-intelr-mkl

[55] Ali Madani, Mehdi Moradi, Alexandros Karargyris, and Tanveer Syeda-
Mahmood. Chest x-ray generation and data augmentation for cardio-
vascular abnormality classification. In Medical imaging 2018: Image
processing, volume 10574, pages 415–420. SPIE, 2018.

[56] Hartmut Maennel, Ibrahim M Alabdulmohsin, Ilya O Tolstikhin, Robert
Baldock, Olivier Bousquet, Sylvain Gelly, and Daniel Keysers. What
do neural networks learn when trained with random labels? Advances
in Neural Information Processing Systems, 33:19693–19704, 2020.

[57] Timothy Prickett Morgan. INSIDE FACEBOOK’S FUTURE RACK
AND MICROSERVER IRON. https://www.nextplatform.com/2020/05/
14/inside-facebooks-future-rack-and-microserver-iron/, 2020.

[58] Nvidia. NVVM IR. https://docs.nvidia.com/cuda/nvvm-ir-spec/index.
html, 2021.

[59] NXP. NXP uses Glow to optimize models for low-
power NXP MCUs. https://www.nxp.com/company/blog/
glow-compiler-optimizes-neural-networks-for-low-power-nxp-mcus:
BL-OPTIMIZES-NEURAL-NETWORKS, 2020.

[60] OctoML. OctoML leverages TVM to optimize and deploy models. https:
//octoml.ai/features/maximize-performance/, 2021.

[61] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha,
Z Berkay Celik, and Ananthram Swami. Practical black-box attacks
against machine learning. In ACM Asia CCS, pages 506–519, 2017.

[62] Georg Pichler, Pierre Jean A Colombo, Malik Boudiaf, Günther Kolian-
der, and Pablo Piantanida. A differential entropy estimator for training
neural networks. In International Conference on Machine Learning,
pages 17691–17715. PMLR, 2022.

[63] Vinaychandran Pondenkandath, Michele Alberti, Sammer Puran, Rolf
Ingold, and Marcus Liwicki. Leveraging random label memorization for
unsupervised pre-training. Workshop of Integration of Deep Learning
Theories at Conference on Neural Information Processing Systems
(NIPS), 2018.

[64] Ivan Puddu, Moritz Schneider, Daniele Lain, Stefano Boschetto, and
Srdjan Čapkun. On (the lack of) code confidentiality in trusted execution
environments. arXiv preprint arXiv:2212.07899, 2022.

[65] Pytorch. Dense Convolutional Network (DenseNet). https://pytorch.org/
hub/pytorch vision densenet/, 2021.

[66] Qualcomm. Qualcomm contributes Hexagon DSP improvements to
the Apache TVM community. https://developer.qualcomm.com/blog/
tvm-open-source-compiler-now-includes-initial-support-qualcomm-hexagon-dsp,
2020.

[67] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised
representation learning with deep convolutional generative adversarial
networks. arXiv preprint arXiv:1511.06434, 2015.

[68] Adnan Siraj Rakin, Md Hafizul Islam Chowdhuryy, Fan Yao, and
Deliang Fan. Deepsteal: Advanced model extractions leveraging efficient
weight stealing in memories. In 2022 IEEE Symposium on Security and
Privacy (SP), pages 1157–1174. IEEE, 2022.

[69] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Bit-flip attack:
Crushing neural network with progressive bit search. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages
1211–1220, 2019.

[70] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Tbt: Targeted neural
network attack with bit trojan. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 13198–
13207, 2020.

[71] Adnan Siraj Rakin, Zhezhi He, Jingtao Li, Fan Yao, Chaitali Chakrabarti,
and Deliang Fan. T-bfa: Targeted bit-flip adversarial weight attack.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
44(11):7928–7939, 2021.

[72] Adnan Siraj Rakin, Yukui Luo, Xiaolin Xu, and Deliang Fan. Deep-dup:
An adversarial weight duplication attack framework to crush deep neural
network in multi-tenant fpga. In 30th USENIX Security Symposium,
2021.

[73] Kaveh Razavi, Ben Gras, Cristiano Giuffrida, Erik Bosman, Bart Pre-
neel, and Herbert Bos. Flip Feng Shui: Hammering a Needle in the
Software Stack. page 19.

[74] Mauro Ribeiro, Katarina Grolinger, and Miriam A.M. Capretz. Mlaas:
Machine learning as a service. In 2015 IEEE 14th International
Conference on Machine Learning and Applications (ICMLA), pages
896–902, 2015.

[75] Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Garret Catron, Summer
Deng, Roman Dzhabarov, Nick Gibson, James Hegeman, Meghan Lele,
Roman Levenstein, et al. Glow: Graph lowering compiler techniques
for neural networks. arXiv preprint, 2018.

[76] Mark Seaborn and Thomas Dullien. Exploiting the dram rowhammer
bug to gain kernel privileges. Black Hat, 15:71, 2015.

[77] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data
augmentation for deep learning. Journal of big data, 6(1):1–48, 2019.

[78] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[79] Youssef Skandarani, Pierre-Marc Jodoin, and Alain Lalande. Gans for
medical image synthesis: An empirical study. Journal of Imaging,
9(3):69, 2023.

[80] Andrei Tatar, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
Defeating software mitigations against rowhammer: a surgical precision
hammer. In Research in Attacks, Intrusions, and Defenses: 21st Inter-
national Symposium, RAID 2018, Heraklion, Crete, Greece, September
10-12, 2018, Proceedings 21, pages 47–66. Springer, 2018.

[81] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas
Ristenpart. Stealing machine learning models via prediction apis. In
USENIX Sec’16.

[82] Victor Van Der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel
Gruss, Clémentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh
Razavi, and Cristiano Giuffrida. Drammer: Deterministic rowhammer
attacks on mobile platforms. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pages 1675–
1689, 2016.

[83] Victor Van der Veen, Martina Lindorfer, Yanick Fratantonio, Harikrish-
nan Padmanabha Pillai, Giovanni Vigna, Christopher Kruegel, Herbert
Bos, and Kaveh Razavi. Guardion: Practical mitigation of dma-based
rowhammer attacks on arm. In Detection of Intrusions and Malware,
and Vulnerability Assessment: 15th International Conference, DIMVA
2018, Saclay, France, June 28–29, 2018, Proceedings 15, pages 92–
113. Springer, 2018.

[84] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In Advances in neural information processing systems,
pages 5998–6008, 2017.

[85] Jialai Wang, Ziyuan Zhang, Meiqi Wang, Han Qiu, Tianwei Zhang,
Qi Li, Zongpeng Li, Tao Wei, and Chao Zhang. Aegis: Mitigating
targeted bit-flip attacks against deep neural networks. arXiv preprint
arXiv:2302.13520, 2023.

[86] Sally Ward-Foxton. Google and Nvidia Tie in MLPerf;
Graphcore and Habana Debut. https://www.eetimes.com/
google-and-nvidia-tie-in-mlperf-graphcore-and-habana-debut/#, 2021.

[87] Mengjia Yan, Christopher W Fletcher, and Josep Torrellas. Cache
telepathy: Leveraging shared resource attacks to learn dnn architectures.
In USENIX Sec’20.

[88] Fan Yao, Adnan Siraj Rakin, and Deliang Fan. DeepHammer: Depleting
the Intelligence of Deep Neural Networks through Targeted Chain of Bit
Flips. In 29th USENIX Security Symposium (USENIX Security 20), pages
1463–1480.

[89] Honggang Yu, Haocheng Ma, Kaichen Yang, Yiqiang Zhao, and Yier
Jin. Deepem: Deep neural networks model recovery through em side-
channel information leakage. In 2020 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), 2020.

[90] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver
Wang. The unreasonable effectiveness of deep features as a perceptual
metric. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 586–595, 2018.

[91] Ranyang Zhou, Sabbir Ahmed, Adnan Siraj Rakin, and Shaahin Angizi.
Dnn-defender: An in-dram deep neural network defense mechanism for
adversarial weight attack. arXiv preprint arXiv:2305.08034, 2023.

[92] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and
Yuheng Zou. DoReFa-Net: Training Low Bitwidth Convolutional Neural
Networks with Low Bitwidth Gradients.

[93] Yuankun Zhu, Yueqiang Cheng, Husheng Zhou, and Yantao Lu. Hermes
attack: Steal {DNN} models with lossless inference accuracy. In
USENIX Security, 2021.

16

https://www.nextplatform.com/2020/05/14/inside-facebooks-future-rack-and-microserver-iron/
https://www.nextplatform.com/2020/05/14/inside-facebooks-future-rack-and-microserver-iron/
https://docs.nvidia.com/cuda/nvvm-ir-spec/index.html
https://docs.nvidia.com/cuda/nvvm-ir-spec/index.html
https://www.nxp.com/company/blog/glow-compiler-optimizes-neural-networks-for-low-power-nxp-mcus:BL-OPTIMIZES-NEURAL-NETWORKS
https://www.nxp.com/company/blog/glow-compiler-optimizes-neural-networks-for-low-power-nxp-mcus:BL-OPTIMIZES-NEURAL-NETWORKS
https://www.nxp.com/company/blog/glow-compiler-optimizes-neural-networks-for-low-power-nxp-mcus:BL-OPTIMIZES-NEURAL-NETWORKS
https://octoml.ai/features/maximize-performance/
https://octoml.ai/features/maximize-performance/
https://pytorch.org/hub/pytorch_vision_densenet/
https://pytorch.org/hub/pytorch_vision_densenet/
https://developer.qualcomm.com/blog/tvm-open-source-compiler-now-includes-initial-support-qualcomm-hexagon-dsp
https://developer.qualcomm.com/blog/tvm-open-source-compiler-now-includes-initial-support-qualcomm-hexagon-dsp
https://www.eetimes.com/google-and-nvidia-tie-in-mlperf-graphcore-and-habana-debut/#
https://www.eetimes.com/google-and-nvidia-tie-in-mlperf-graphcore-and-habana-debut/#

	Introduction
	Preliminaries and Motivations
	DL Compilers and DNN Executables
	Bit-Flip Attacks
	Research Motivation

	Threat Model and Assumptions
	Assault from a Weak Attacker
	Overview and ``Superbits''
	BFA Pipeline
	Preparing DNN Executables with Well-Trained Weights for Local Profiling

	Study Setup
	Evaluation
	① Pervasive Vulnerabilities
	② Effective & Stealthy Corruption
	③ Versatile End-Goals
	④ Superbits
	⑤ Practical Attack
	Case Study

	Discussion
	Comparison Against Existing Attacks and Defenses
	Future Defense Directions
	Generality and Extension

	Related Work
	Conclusion
	References

