
See the Forest, not Trees: Unveiling and Escaping the Pitfalls of
Error-Triggering Inputs in Neural Network Testing
Yuanyuan Yuan

Hong Kong University of Science and
Technology

Hong Kong, China
yyuanaq@cse.ust.hk

Shuai Wang
Hong Kong University of Science and

Technology
Hong Kong, China
shuaiw@cse.ust.hk

Zhendong Su
ETH Zurich

Zurich, Switzerland
zhendong.su@inf.ethz.ch

Abstract
Recent efforts in deep neural network (DNN) testing commonly use
error-triggering inputs (ETIs) to quantify DNN errors and to fine-
tune the tested DNN for repairing. This study reveals the pitfalls
of ETIs in DNN testing. Specifically, merely seeking for more ETIs
“traps” the testing campaign into local plateaus, where similar ETIs
are continuously generated using a few fixed input transformations.
Similarly, fine-tuning the DNN with ETIs, while capable of fixing
the exposed DNNmis-predictions, undermines the DNN’s resilience
towards certain input transformations. However, these ETI-induced
pitfalls have been overlooked in previous research, due to the in-
sufficient input transformations (usually < 10), and we show that
the severity of such deceptive phenomena is enlarged when testing
DNNs with more and diverse real-life input transformations.

This paper presents a comprehensive study on the pitfalls of
ETIs in DNN testing. We first augment conventional DNN testing
pipelines with a large set of input transformations; the correctness
and validity of these new transformations are verified with large-
scale human studies. Based on this, we show that launching an
endless pursuit for ETIs cannot alleviate the “trapped testing” issue,
and the undermined resilience pervasively occurs in many input
transformations. Accordingly, we propose a novel and holistic view-
point over DNN errors: instead of counting which input triggers
a DNN mis-prediction, we record which input transformation can
generate ETIs. The targeted input property of this transformation,
termed erroneous property (EP), counts one DNN error and guides
DNN testing (i.e., our new paradigm aims to find more EPs rather
than ETIs). Evaluation shows that this EP-oriented testing paradigm
significantly expands the explored DNN error space. Moreover, fine-
tuning DNNs with EPs effectively improves their resilience towards
different input transformations.

CCS Concepts
• Software and its engineering → Software testing and debug-
ging.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’24, September 16–20, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3680385

Keywords
Deep learning testing
ACM Reference Format:
Yuanyuan Yuan, Shuai Wang, and Zhendong Su. 2024. See the Forest,
not Trees: Unveiling and Escaping the Pitfalls of Error-Triggering Inputs
in Neural Network Testing. In Proceedings of the 33rd ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis (ISSTA ’24), Sep-
tember 16–20, 2024, Vienna, Austria. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3650212.3680385

1 Introduction
Deep neural networks (DNNs) have prosperous development in
many applications, such as facial authentication and autonomous
driving. Yet, similar to conventional software, DNNs are erroneous
and can result in catastrophic accidents. In recent works, DNNs
have been tested in various settings (e.g., autonomous driving [54],
object detection [59], visual question answering [70], secure com-
putation [41], etc.) and various testing objectives [29, 33, 38, 58, 68]
and oracles [62, 67] have been designed. In general, the testing
pipeline (often derived from metamorphic testing [8]) can be sum-
marized as follows: given an input 𝑥 and a transformation 𝑡 (e.g.,
rotation), a DNN error1 is detected if the DNN’s prediction for a
slightly mutated input 𝑥 ′ = 𝑡 (𝑥) changes. As the finality of the
testing campaign, these ETIs are leveraged to fine-tune the tested
DNN to repair the identified mis-predictions [59, 69]. Many ETIs are
found by previous studies, and DNN loss can be reduced through
fine-tuning. Nonetheless, this research revisits the above common
practice by posing the following key question:

“Is ‘ETIs’ an appropriate indicator in DNN testing?”
In fact, DNNs are designed to perceive different semantical prop-

erties in their inputs and the internal logic of a DNN is reflected by
its decision boundary in the input space. That is, DNN errors stem
from the incorrect decision boundary, and the purpose of DNN
testing is to discover and properly tune incorrect decision bound-
aries. We explain two primary issues in ETI-oriented DNN testing
below; our research questions (Sec. 7 and Sec. 8) are designed to
empirically illustrate and rectify them accordingly.
① Countless Inputs: In general, a DNN’s decision boundary di-
vides the entire input space as regions based on different properties
of inputs (e.g., brightness, wheels in cars) [31, 44]. Accordingly,
a DNN’s ETIs locate in its ill-separated regions. Since inputs are
continuous variables and deemed as “dots” in the whole space, an
ill-separated region of even tiny size already includes innumerous
1This paper considers the “mis-prediction error” widely studied in existing DNN testing
research; it subsumes common DNN defects such as robustness and fairness issues.

https://orcid.org/0000-0002-3053-8923
https://orcid.org/0000-0002-0866-0308
https://orcid.org/0000-0002-2970-1391
https://doi.org/10.1145/3650212.3680385
https://doi.org/10.1145/3650212.3680385

ISSTA ’24, September 16–20, 2024, Vienna, Austria Yuanyuan Yuan, Shuai Wang, and Zhendong Su

class 1
class 2

(c) ETIs are more easily to
generate by mutating P3.

P3

P1
new

(a) Countless inputs exist
in an ill-separated region.

class 1

decision
boundary

countless
inputs

class 1

two disconnected
ill-separated regions

decision
boundary

(b) Disconnected ill-
separated regions.

old

P2

Figure 1: Problems encountered when focusing on ETIs.

error-triggering inputs, as illustrated in Fig. 1(a). We thus question
the common practice of assessing DNN errors based on the number
of ETIs. Moreover, due to the non-linearity of DNNs (i.e., the deci-
sion boundary is not a straight line), an incorrect decision boundary
can cause many disconnected, ill-separated regions, within which
ETIs may likely have distinct properties (as shown in Fig. 1(b)).
Hence, merely searching for more ETIs can trap the testing into
certain regions, because ETIs, though similar, can be constantly
generated within only a few ill-separated regions.
② Mutual Exclusivity: Conceptually, fine-tuning a DNN with
EITs pushes its decision boundary away from these ETIs and to-
wards the direction decided by ETIs’ ground truth labels (Fig. 1(c);
see Sec. 2.3 for formalization). Nevertheless, since the fine-tuning is
guided by point-wise loss terms (i.e., computed over each input and
then average), it may indeed impair a DNN due to mutually exclu-
sive input properties [14, 47, 55], e.g., 𝑃2 and 𝑃3 lying in different
sides of the decision boundary. As in Fig. 1(c), suppose more ETIs
are detected by mutating inputs exhibiting property 𝑃2 than those
of 𝑃1, e.g., due to stochasticity in testing. Thus, the fine-tuned deci-
sion boundary largely shifts to the left (from the red one to the blue
one in Fig. 1(c)). Although the overall loss is reduced (as mutating 𝑃2
generates more ETIs and the loss is dominated by them), mutating
inputs exhibiting 𝑃3 on the left side becomes more “fragile” and
may likely trigger mis-predictions (i.e., inputs can move across the
decision boundary with slight perturbations over 𝑃3).

Following the above observations, we view ETIs as deceptive in
DNN testing. We notice that such misleading testing is unaware
in previous works, primarily due to the insufficient input transfor-
mations (usually < 10). To study these issues, we first augment
existing works with a comprehensive set of input transformations.
Given that pixel-based transformations (e.g., brightness, rotation)
by design are limited, we focus on perception-based input trans-
formations [7, 13, 30, 69] which are prevalent in real world. Exist-
ing perception-based transformations require manually annotating
transformable perceptions [73] (e.g., eyes in a portrait); we therefore
propose an automatic approach to discover transformable percep-
tions and generate ∼8,000 new transformations. Note that a trans-
formation does not equal to arbitrarily editing input properties. It
should consistently and uniquely mutate the same targeted property
across different inputs. We conduct a large-scale human evaluation
to validate the consistency and uniqueness of our augmented input
transformations (Pilot RQ in Sec. 5).

We evaluate 8 real-world DNNs (trained using 4 large-scale
datasets) with 9 popular testing objectives and prioritization met-
rics. Our findings show that, even when employing more input

transformations (which can trigger mis-predictions on the tested
DNN), the DNN testing remains to focus on a few transformations
that have generated ETIs at the initial testing stage. Moreover, set-
ting an endless testing campaign hardly helps, as ETIs, though
similar, can be constantly generated using a few already-explored
input transformations (RQ1 in Sec. 7). In addition, when fine-tuning
DNNs with ETIs, we note that ∼50% of input transformations tar-
get mutually exclusive properties, showing their pervasiveness. To
further study impacts of the mutual exclusivity, we collect all ETIs
generated during testing to fine-tune the tested DNNs. Surprisingly,
all 8 “repaired” DNNs become more fragile to ∼30% of the trans-
formations. After investigating the ETIs, we find that only a few
of them were generated from these “more fragile” input transfor-
mations when testing the original DNNs. As a result, during the
fine-tuning, their contributions are shallowed by ETIs generated
from other transformations (RQ2 in Sec. 8).
“The Forest vs. Trees.” With the above findings, this paper advo-
cates a more holistic viewpoint of DNN errors: instead of counting
which input triggers a DNN mis-prediction (i.e., ETIs), we record
which input transformation generates ETIs. Accordingly, we deem
the tested DNN as erroneous to the targeted input properties of
such transformations, and count one erroneous property (EP) as
one DNN error. For instance, if changing image brightness can
trigger a DNN’s mis-predictions, we count only one DNN error
as “being erroneous to the brightness property”, regardless of how
many ETIs are generated by the brightness transformation. EPs, to
some extent, reflect “clusters” of ETIs in a DNN’s input space.

To address our unveiled issues, we propose simple yet effective
EP-oriented regulations for DNN testing. When performing input
mutations with different transformations, we explicitly force the
testing to always use a fresh transformation that hasn’t generated
ETIs yet. During fine-tuning, we separately compute the loss term
for ETIs generated using different transformations. Results show
that, with our regulations, the testing can avoid being trapped and
detect all transformations capable of triggering mis-predictions,
within only modest testing epochs (Sec. 7.3). Also, our refined fine-
tuning scheme can enhance the tested DNN’s resilience towards
all input transformations (Sec. 8.3). In sum, this paper makes the
following contributions:
• We unveil that merely seeking for more ETIs misleads the DNN
testing to constantly generate similar ETIs using a few fixed
input transformations. Moreover, fine-tuning the tested DNN
with ETIs makes it more fragile to certain input transformations,
due to mutually exclusive input properties (which are pervasive)
targeted by different transformations.
• We propose a technique that automatically generates a great
number of different input transformations. Large-scale human
evaluations validate the quality of these transformations. These
transformations can boost future DNN testing works.
• We revisit existing ETI-oriented testing and advocate a new, EP-
oriented scheme that focuses on input transformations triggering
DNNmis-predictions. We design simple yet effective EP-oriented
regulations, delivering more comprehensive and accurate DNN
testing and fine-tuning.

Artifact. Our artifact is available at https://github.com/Yuanyuan-
Yuan/EP-DNN-testing [2].

https://github.com/Yuanyuan-Yuan/EP-DNN-testing
https://github.com/Yuanyuan-Yuan/EP-DNN-testing

See the Forest, not Trees: Unveiling and Escaping the Pitfalls of Error-Triggering Inputs in Neural Network Testing ISSTA ’24, September 16–20, 2024, Vienna, Austria

2 Preliminaries and Terminologies
Aligned to existing DNN testing works [15, 18, 22, 33, 42, 54, 59,
60, 62, 63, 67], we focus on image DNNs; also, image properties
are easy to present and understand by even layman audiences. We
discuss the applicability to other input formats (e.g., text) in Sec. 9.
We now introduce preliminaries and terminologies of this study.

2.1 Input Transformations and EPs
Input transformations can be formally defined as in Def. 1.

Definition 1 (Input Transformation). An input transformation con-
sistently targets one unique property (not targeted by other transfor-
mations) across different inputs. By applying a transformation with
varied extents to an input, different mutated variants can be produced.

For example, rotation transformation 𝑡𝑟 consistently targets the
rotation angle (i.e., one input property) of different images and
“rotating 30 degrees” and “rotating 90 degrees” are two mutations
achieved via the same transformation 𝑡𝑟 . If applying a transforma-
tion to a DNN’s inputs can trigger mis-predictions, the DNN is
erroneous to the property targeted by the transformation.

Definition 2 (Erroneous Property (EP)). If applying a transforma-
tion 𝑡 to a DNN’s input 𝑥 can trigger mis-predictions (i.e., the DNN
has different predictions for 𝑥 and 𝑡 (𝑥)), the DNN is erroneous to the
input property targeted by 𝑡 . We view 𝑡 ’s targeted property as one
erroneous property (EP) of the DNN.

For instance, if the rotation transformation 𝑡𝑟 can trigger mis-
predictions when applied to one of the DNN’s inputs, the rotation
angle property (regardless of the exact degree) is an EP of the DNN.
Below, we introduce existing (image) transformations.
Pixel-Based. Early DNN testing works adopt transformations over
image properties decided by pixel values [42, 54, 62], such as 1)
adding noise, 2) blurring, 3) changing brightness, and 4) changing
contrast. Other works also focus on image properties determined
by the arrangement of pixels, including 5) translation, 6) reflection,
7) scaling, 8) rotation, and 9) shearing [54, 62].
Style-Based. Some recent works decompose an image as its con-
tent and style, and propose style-based transformation to change
image styles. For example, [63, 68] apply the style of artistic paint-
ings to real-life photos to test image classifiers. [54, 71] transfer
the weather conditions between different driving scenes to test
autonomous driving DNNs.
Perception-Based. The latest works propose different methods
to edit perceptual contents (e.g., a face’s age) in images. For ex-
ample, [13] leverages generative models to achieve fine-grained
manipulations over object orientation, motions, etc. [30] fuses dif-
ferent digits to confuse image classifiers. [69] implements gradual
transitions of object status in images. Despite the effectiveness of
perception-based manipulations in DNN testing, they are often
arbitrary and input-specific. Several recent works have achieved
perception-based transformations and ensure the consistency and
uniqueness (see Def. 1) via optimization-based solutions [73, 74]
(whose details will be introduced in Sec. 4). However, they require
manually annotating transformable perceptions in images, limiting
the number of available transformations.

2.2 DNN Testing Methods
RandomTesting. This testing scheme treats a DNN as “black-box”
and randomly generates mutated inputs to stress the DNN. For
example, DeepRoad [71] uses GANs [75] to perform style transfer
(e.g., from “sunny” to “snowy”) on driving scene images and check
if the auto-driving DNN behaves inconsistently.
Objective-Guided Testing. Recent works treat a DNN as “white-
box”, thus creating different testing objectives. The intuition is that,
with objectives that characterize DNN activities, guided (and often
more effective) mutations are performed, which can increase the
chance of triggering DNN mis-predictions. Existing objectives can
be roughly divided into the following categories.
Coverage: Similar to code coverage in traditional programs, DNN
coverage metrics measure the number of activated neuron states
during DNN execution [38, 42, 68]. Input mutations are guided to
maximize the coverage value during DNN testing [38, 42, 68].
Adequacy: These metrics log a trace of neuron outputs in each DNN
execution. Then, they compare this trace with all traces logged
when the DNN is executing its training data and compute a sim-
ilarity score 𝑠 [33, 34]. Input mutations are guided to expand the
range covered by 𝑠 .
Input Prioritization. Unlike previous works where mutations are
guided during runtime, methods are designed to prioritize mutated
inputs that are already generated, such that mis-predictions can
be more quickly triggered without testing all mutated inputs. The
majority of them are implemented using diversity metrics [15, 63]:
for an input 𝑥 and its mutant 𝑥 ′, the diversity of their corresponding
intermediate outputs (in the tested DNN) is computed as the prior-
ity of 𝑥 ′. The intuition is that mutations leading to diverse DNN
intermediate outputs are more likely to trigger mis-predictions.

2.3 DNN Fine-Tuning
Similar to traditional software testing, DNN testing also expects
to repair the identified errors. Unlike traditional software whose
logics are explicitly coded, such that developers can directly modify
the code to fix errors, DNN logics are implicitly learned from data.
Thus, the repairing is conducted by fine-tuning the DNNwith error-
triggering inputs (and their ground truth labels) to fix the identified
mis-predictions.

The basis of fine-tuning is adapted from the adversarial/robust
training [57]. For a DNN 𝑓𝜃 , the intuition behind fine-tuning (using
ETIs) is to minimize the following loss:

1
|𝐷 |

∑
(𝑥,𝑦) ∈𝐷

[
max

𝑥 ′∼𝒩 (𝑥,𝜖)
𝐿(𝑓𝜃 (𝑥 ′), 𝑦)

]
, (1)

where 𝑦 is the ground truth label of 𝑥 and 𝒩 (𝑥, 𝜖) denotes all mu-
tants of 𝑥 .𝐷 is the set of all (𝑥,𝑦) pairs (i.e., the seed corpus in DNN
testing), and 𝐿 is the loss function based on the task of 𝑓𝜃 (e.g., 𝐿
is cross entropy if 𝑓𝜃 performs classification). This objective mini-
mizes the maximal loss. Intuitively, it guides the fine-tuning to do
two things: 1) putting the ETI 𝑥 ′ onto the correct side of the decision
boundary (as indicated by the ground truth label 𝑦) and 2) pushing
the decision boundaries to remain distant to 𝑥 (as determined by 𝜖)
so that perturbing 𝑥 hardly triggers mis-predictions.

ISSTA ’24, September 16–20, 2024, Vienna, Austria Yuanyuan Yuan, Shuai Wang, and Zhendong Su

Existingworks ease the gradient computation (during fine-tuning)
of the max operation in Eq. 1 with Danskin’s theorem [10, 56]: for
an inner function involving maximization, its gradient equals the
gradient computed on the maximal. Hence, minimizing the objec-
tive in Eq. 1 is implemented as follows for every (𝑥,𝑦).

argmin
𝜃

𝐿(𝑓𝜃 (𝑥 ′), 𝑦), 𝑓𝜃 (𝑥 ′) .𝑙𝑎𝑏𝑒𝑙 ≠ 𝑦 (2)

Overall, this procedure first finds a mutant 𝑥 ′ that flips the label 𝑦
(which is among mutants having the largest loss) and then forces
the DNN 𝑓𝜃 to predict 𝑦 for the mutant 𝑥 ′, i.e., fine-tuning the DNN
with all detected ETIs. This approach is commonly adopted in DNN
testing works [33, 40, 59, 68, 69].

3 Research Overview
Research Motivations and Deliverables. This study unveils the
pitfalls of ETIs in DNN testing, i.e., ETIs trap the testing and impair
the DNNduring fine-tuning, and proposes solutions for the unveiled
issues. Our study is conducted by exploring the following two
research questions (RQs):

RQ1 (Sec. 7): How the testing is trapped into local error space if it
focuses on ETIs? Does endlessly searching for more ETIs help to
expand the explored error space?

RQ2 (Sec. 8): How often do mutually exclusive properties exist in
different transformations? How does mutual exclusivity affect DNN
fine-tuning?

To alleviate our unveiled issues, we accordingly propose simple
yet highly effective, EP-oriented regulations to expand the discov-
ered error space (see Sec. 7.3) and enhance the fine-tuning (Sec. 8.3).

Technical Challenges and Solutions. As introduced in Sec. 2.1,
transformations designed in prior works are limited, exploring only
negligible error space and hiding severe testing issues. We therefore
require an automated approach to generate a comprehensive set
of input transformations, such that we can assess 1) how ETIs trap
the testing on a small and fixed set of transformations, and 2) the
pervasiveness of mutually exclusive properties in diverse real-life
transformations and how they affect the fine-tuning.

We turn our focus into perception-based transformations. First,
they are closer to real-world transformations. Second, they mani-
fest high potential to be largely augmented. For example, merely
an animal’s face encodes a rich set of perceptual properties, such
as the global face orientation, local eye gaze, mouth status, etc.
Examples of our augmented perception-based transformations are
shown in Fig. 2. However, we do not indicate that perception-based
transformations are better; all different types of transformations
are important and complement each other in DNN testing and
fine-tuning, as they all represent common variations in DNN in-
puts. Hence, in our studies in Sec. 7 and Sec. 8, we employ both
perception-based transformations and existing transformations. In
Sec. 5, we conduct a large-scale human evaluation to assess the
correctness (consistency and uniqueness) of these perception-based
transformations. With comprehensive transformations on hand, we
select transformations capable of triggering DNN mis-predictions
and finally use ∼8,000 transformations in our RQs.

(b) Local tl : open mouth(a) Global tg : turn left

x1

x2

x3

x4

tg (x1)

tg (x2)

tl (x3)

tl (x4)

Figure 2: Sample global and local perception-based transfor-
mations. Both satisfy consistency and uniqueness.

4 Generating Input Transformations
Following Sec. 3, this section introduces the basis of implementing
perception-based transformations. We then elaborate on how to
generate these transformations in a large scale by automatically
identifying transformable perceptions.

4.1 Editing Perceptual Properties
Perception-based transformations are implemented based on gen-
erative models (e.g., GANs [20]). Given a generative model𝐺 and a
latent vector 𝑧 (which can be random or converted using a real im-
age), editing the generated image 𝐺 (𝑧) can be characterized using
the Taylor expansion:

𝐺 (𝑧 + 𝜖) −𝐺 (𝑧) = 𝐽𝐽𝐽 (𝑧) 𝜖 +𝑂 (𝜖), 𝐽𝐽𝐽 𝑖, 𝑗 (𝑧) =
𝜕𝐺 (𝑧)𝑖
𝜕𝑧 𝑗

(3)

where 𝜖 is an infinitesimal and 𝐽𝐽𝐽 (𝑧) is the Jacobian matrix of𝐺 over
𝑧. 𝐽𝐽𝐽 𝑖, 𝑗 (𝑧) is the (𝑖, 𝑗)-th entry of 𝐽𝐽𝐽 (𝑧). This expansion demonstrates
that, when perturbing 𝑧, 𝐽𝐽𝐽 (𝑧) governs what perceptions will be
changed in 𝑥 = 𝐺 (𝑧) (since 𝑂 (𝜖) reaches zero much faster than 𝑧).
Therefore, existing works decompose 𝐽𝐽𝐽 (𝑧) into orthogonal vectors
𝑉𝑉𝑉 = {𝑣𝑣𝑣1, 𝑣𝑣𝑣2, . . . } (e.g., via singular value decomposition (SVD) [19]),
and each 𝑣𝑣𝑣𝑖 ∈ 𝑉𝑉𝑉 corresponds to a unique perception-based trans-
formation 𝑡𝑖 , i.e., 𝑡𝑖 (𝑥) = 𝐺 (𝑧 + 𝑣𝑣𝑣𝑖), and the norm of 𝑣𝑣𝑣𝑖 decides the
extent of the mutation achieved by 𝑡𝑖 .
Local-Perception Transformation. The above decomposition
mostly enables global-level transformation for the entire image. For
example, when modifying a human portrait, most transformations
target global perceptions such as orientation, gender, and age, leav-
ing the rich local perceptions (e.g., whether eyes are open or closed)
untouched. Let F and B denote pixels in a specified local region
and the remaining regions, respectively. A local transformation
requires only editing perceptions in F and keeping perceptions in
B unchanged. Suppose 𝑣𝑣𝑣 is one vector obtained using F’s Jacobian
matrix to edit F, Zhu et al. [73] further leverages B’s Jacobian ma-
trix to obtain 𝐵𝐵𝐵, a set of directions towards which modifying 𝑧 does
not change B. Thus, a local transformation can be achieved by first
projecting 𝑣𝑣𝑣 onto 𝐵𝐵𝐵 before editing F:

𝑥 ′ = 𝐺 (𝑧 + 𝐵𝐵𝐵𝐵𝐵𝐵⊺𝑣𝑣𝑣) . (4)

We refer interested readers to [73] for implementation details of
local-perception transformations.

See the Forest, not Trees: Unveiling and Escaping the Pitfalls of Error-Triggering Inputs in Neural Network Testing ISSTA ’24, September 16–20, 2024, Vienna, Austria

4.2 Identifying Transformable Perceptions
The local-perception transformations introduced in Sec. 4.1 re-
quires manually selecting transformable F; it may fail without a
well-selected F (e.g., only half an eye). To automatically generate
local-perception transformations, this paper therefore proposes an
automated approach to identify transformable local perceptions.

As noted in Eq. 3, entries in the 𝑖-th row of 𝐽𝐽𝐽 (𝑧), i.e., 𝐽𝐽𝐽 (𝑖, ·) (𝑧),
decide how the 𝑖-th pixel in 𝑥 = 𝐺 (𝑧) is changed when modifying
𝑧. Intuitively, when perceptions vary in different real images, pixels
belonging to the same transformable perception should change sim-
ilarly. That is, we can group pixels as regions based on 𝐽𝐽𝐽 (𝑖, ·) (𝑧): for a
pixel 𝑖 and one of its neighbors 𝑖 ′, if 𝐽𝐽𝐽 (𝑖, ·) (𝑧) is close to 𝐽𝐽𝐽 (𝑖′, ·) (𝑧), we
then group them together. Otherwise, they will be considered sepa-
rately. This way, we can have a set of disconnected regions, which
will be later used for generating local-perception transformations.
Here, a transformation only targets one region.

For each pixel 𝑖 in 𝑥 = 𝐺 (𝑧), we first average all entries in the
𝑖-th row of 𝐽𝐽𝐽 (𝑧) as

𝐽𝐽𝐽 𝑖 (𝑧) =
1
𝑛

∑𝑛

𝑗=1 𝐽
𝐽𝐽 (𝑖, 𝑗) (𝑧), (5)

where 𝑛 is the dimensionality of 𝑧. We apply image erosion and
dilation to the “image” composed of all 𝐽𝐽𝐽 𝑖 (𝑧). Note that the total
number of different 𝐽𝐽𝐽 𝑖 (𝑧) equals #pixels, and each 𝐽𝐽𝐽 𝑖 (𝑧) corresponds
to the 𝑖-th pixel in the generated image. The erosion operation
erodes away trivial regions of a few pixels (which are likely noise),
and dilation merges fragments that stay close to form larger regions.
These operations are performed by sliding a kernel across an image,
and the kernel size affects the identified regions. In general, larger
regions will be marked if a relatively larger kernel is used.

(a) kernel size 2 (b) kernel size 4 (c) kernel size 8 (d) kernel size 16

Figure 3: Regions generated with different kernel sizes.

To comprehensively identify all feasible local perceptual regions,
we iteratively apply erosion and dilation operations multiple times
with gradually increased kernel sizes, and we record all newly
generated local regions (either by joining pixels or merging existing
regions yielded from prior iterations). As in Fig. 3, increasing the
kernel size helps to generate regions for higher-level perceptions.
With a smaller kernel in Fig. 3(b), eyes, nose, andmouth are localized
in this face photo. The whole face is marked in Fig. 3(c) when
increasing the kernel size, and finally the whole image is marked
to generate global perception-based transformations.
Diversifying and Deduplicating Transformations.When gen-
erating transformations, we use different images to prepare the
latent vector 𝑧 in Eq. 3, so that the generated transformations (with
different transformable perceptions) can be diversified. For exam-
ple, the mutation “turn right” may be more likely spotted in a
left-oriented face photo than in a right-oriented one. Nevertheless,
it is possible that duplicated transformations are generated. Since

each transformation is represented using a vector, we use the cosine
similarity to identify repeated transformations. The cosine similar-
ity ranges within [−1, 1] and two vectors are the same if their cosine
similarity equals to 1. In practice, cosine similarity of > 0.8 often
indicates high similarity. To safely rule out similar transformations,
we remove a generated transformation if its cosine similarity with
any other transformation is > 0.5.

5 Pilot Study
We first launch a pilot study to evaluate the correctness of our
generated transformations. We aim to answer the Pilot RQ: Do the
generated transformations satisfy the consistency and uniqueness?

Consistency and uniqueness are evaluated by comparing the
equivalence between transformations. Nevertheless, transforma-
tion “equivalence” does not imply they are the same, as the same
transformation can achieve mutations of different extents. E.g., “ro-
tating 30◦” and “rotating 90◦” are two equivalent transformations
(i.e., they are consistent), whereas rotation and translation are two
inequivalent transformations (i.e., each targets a unique property).

Since it is generally impractical to automatically compare changes
of perceptions, we conduct human evaluations on the Amazon Me-
chanical Turk platform [1], designed as follows:wg1 We first randomly select 750 transformations 𝑡𝑖 and construct 750
pairs of same transformations ⟨𝑡𝑖 , 𝑡𝑖 ⟩ (for consistency) and 750 pairs
of different transformations ⟨𝑡𝑖 , 𝑡 𝑗 ⟩ where 𝑖 ≠ 𝑗 (for uniqueness).
These pairs are then mixed as a set 𝑇 .wg2 For each pair of transformations ⟨𝑡𝑖 , 𝑡 𝑗 ⟩ from 𝑇 (where 𝑖 may
equal 𝑗 , i.e., they are the same transformation), we randomly con-
struct 2 pairs of images, ⟨𝑥𝑎, 𝑥𝑎⟩ ⟨𝑥𝑎, 𝑥𝑏⟩, where 𝑎 ≠ 𝑏, and form
two questions: the first one compares two transformations on the
same image: 𝑥𝑎 → 𝑡𝑖 (𝑥𝑎) and 𝑥𝑏 → 𝑡 𝑗 (𝑥𝑎), whereas the other one
compares two transformations on different images: 𝑥𝑎 → 𝑡𝑖 (𝑥𝑎)
and 𝑥𝑏 → 𝑡 𝑗 (𝑥𝑏). The extent of a mutation is also randomly decided.
This way, we ensure that transformation pairs in𝑇 are compared on
different images with different extents of mutations to reduce the
bias. To avoid ambiguity, the participant is only allowed to answer
“yes” or “no”.wg3 Finally, we have total (750 + 750) × 2 = 3, 000 questions. We
then divide them into 6 groups and duplicate each group 3 times.
Accordingly, we hire 18 senior Ph.D. students who have experience
in DNN testing, and each Ph.D. student answers all 500 questions in
one group. This way, each question is evaluated by three different
participants to reduce personal bias.wg4 We also form 20 sanity check questions for each participant. In
some questions, two transformations are randomly selected from
existing pixel-based transformations, and the ground truth answer
is “yes”/“no” if two transformations are same/different. In others,
the transformations, original images, and the extent of mutations,
are exactly the same such that the ground truth answer is “yes”. The
participant is unaware of the sanity check questions and his/her
answers will only be considered if he/she passes 90% of them.

Before the evaluation, we prepare a 30-minute warm-up (using
30 sample questions) for participants to understand the equivalence
between transformations. To avoid fatigue, we do not set a time
limit for each question, and participants can pause/resume the
evaluation at any time.

ISSTA ’24, September 16–20, 2024, Vienna, Austria Yuanyuan Yuan, Shuai Wang, and Zhendong Su

Table 1: Datasets adopted in evaluations.

Dataset #Images Image Size Remarks
ImageNet [11] 1,000,000 128 × 128 1000 classes of real images
Flickr Faces [32] 70,000 1024 × 1024 High-quality & fidelity face photos
CelebA [37] 200,000 128 × 128 40 facial attributes annotated
Animal Faces [9] 15,000 512 × 512 Wild animal faces
LSUN Car [66] 2,000,000 512 × 256 High-quality & fidelity car photos

Table 2: Evaluated DNNs.

DNN #Layers/Modules Task Remarks
ResNet [24] 34 General classification Non-sequential structure
VGG [50] 16 General classification Sequential structure
Inception [51] 48 General classification Feature extraction
MobileNet [27] 53 General classification Mobile devices
DenseNet [28] 121 General classification Extremely deep DNN
FaceNet [48] 7 Human face identification Regression task
AlexNet [35] 8 Animal classification One-class seed corpus
EfficientNet [52] 24 Car recognition Fast inference speed

Results.We use the following two metrics to evaluate the results.
Correctness: For two same transformations, it is correct in terms of
consistency if ≥ 2 participants have answered “yes”. For two differ-
ent transformations, if ≥ 2 participants have answered “no”, it sat-
isfies the uniqueness. For consistency and uniqueness evaluations,
the percentages of transformations satisfying the requirements are
0.94 and 0.95, respectively, demonstrating that our transformations
are correctly implemented.
Agreement:We also evaluate the agreement among different partici-
pants using the kappa statistics [16]. The Kappa score ranges within
[0, 1] and a higher score indicates a better agreement. Our collected
answers have 0.82 and 0.83 kappa scores for the consistency and
uniqueness evaluations, indicating a strong agreement [49].
Validity of Mutated Images. We do not observe invalid images
(i.e., an image is “unnatural” and hardly recognized by humans [12,
45]) generated by our transformations. In fact, the validity of these
mutations are ensured by Jacobian matrix decomposition in a prin-
cipled manner [6, 61, 72, 73]; see more samples in our artifact [2].

6 Evaluation Setup

Datasets. We use five real-world datasets shown in Table 1. These
datasets are used for general image understanding (e.g., ImageNet)
or domain-specific recognition tasks (e.g., LSUN Car). All of them
are large-scale regarding the information in each image (e.g., the
resolution), #images, and #classes. ImageNet has 1000 classes, we
only select the first 20 classes due to efficiency consideration.
DNNs.Table 2 reports eight evaluated large-scale, real-world DNNs.
These DNNs are well-trained (officially provided by Pytorch or the
developers) and are representative in terms of the model structures
(e.g., sequential vs. non-sequential), targeted platforms (e.g., mo-
bile devices), tasks (classification vs. regression), optimization (e.g.,
MobileNet is optimized for size reduction, and EfficientNet is opti-
mized for inference speed), etc. It’s worth noting that, when testing
AlexNet, we only use images of one class to construct the seed
corpus. With comparison to other seed corpora of more classes, we
can evaluate the impacts of the seed corpus’s diversity.
Transformations. Table 3 lists transformations adopted in prior
DNN testing research. For artistic-style-based transformations, we

Table 3: Image transformation methods in prior works.

Pixel-based 1) Noise; 2) Blurring; 3) Brightness; 4) Contrast
5) Translation; 6) Reflection; 7) Scale; 8) Rotate; 9) Shear

Style-based 1) Rainy; 2) Foggy; 3) Snowy; 4) Cloudy
& 31 different artistic styles (31 transformations)

use style corpus from [17]. Though many styles are provided, we
found most styles are similar. Thus, following our deduplication
method (see Sec. 4.2), we also deduplicate the extracted styles
(which are encoded as vectors) using a cosine similarity thresh-
old of 0.5. A total of 31 different styles are obtained.
Augmented Transformations. Due to the overhead and efficacy
consideration, we use GANs to generate perception-based transfor-
mations. Our explorations show that diffusion models [64] are im-
practical to compute the Jacobian matrix in Eq. 3, and multi-modal
LLMs (e.g., GPT-4) perform worse on the consistency and unique-
ness of transformations; they also require manually specifying the
text instruction for each transformation.We use BigGAN [6] trained
with ImageNet to generate transformations for different classes in
ImageNet. Following advice in [69], we generate perception-based
transformations individually for images of different classes, as per-
ceptions vary by class (e.g., the perception wheel does not exist in
classes related to animals). For each class, we use 10 different images
to prepare the latent vector 𝑧. StyleGANs [32] are adopted to gener-
ate transformations for the remaining domain-specific datasets and
100 images are used to prepare the latent vector 𝑧 for each dataset.

In Sec. 7 and Sec. 8, our evaluations require transformations that
can trigger DNN mis-predictions. For ImageNet DNNs, we gen-
erate 1944 perception-based transformations that can trigger mis-
predictions on all of them. For other three DNNs trained on three
different datasets, we also prepare 1944 perception-based transfor-
mations capable of triggering mis-predictions for each of them (to
be comparable with the ImageNet setting). We find that all 44 ex-
isting transformations listed in Table 3 can trigger mis-predictions
on all our evaluated DNNs. In sum, for each DNN/dataset, we pre-
pare 1988 different transformations and each transformation is
associated with one EP of its tested DNN.
Objectives. We consider a broad set of white-box and black-box
testing objectives that are widely adopted in different scenarios.
Different random testing schemes are also evaluated (see Sec. 7.1.1).
We introduce these objectives below.
Coverage: Three representative DNN coverage criteria are consid-
ered. Neuron Coverage (NC) [42] and Top-K Neuron Coverage
(TKNC) [38] are two structure coverage metrics. NC treats one
neuron as the coverage unit, whereas TKNC focuses on DNN layers.
NeuraL Coverage (NLC) [68] is one recently proposed distribution-
level coverage, which measures the coverage based on the distribu-
tion of a DNN’s intermediate outputs.
Adequacy: We consider Likelihood Surprise Coverage (LSC) [33]
in our evaluation due to its low computation and space overhead.
Entropy: The entropy is adopted to guide black-box testing [21, 69],
i.e., performing mutations to maximize the entropy. The entropy
metric quantifies the uncertainty in DNN’s outputs. A higher output
entropy indicates that the DNN is more likely confused with the
input and may have mis-predictions.

See the Forest, not Trees: Unveiling and Escaping the Pitfalls of Error-Triggering Inputs in Neural Network Testing ISSTA ’24, September 16–20, 2024, Vienna, Austria

Prioritization Metrics.We study two state-of-the-art prioritiza-
tionmetrics [63] that use Kullback-Leibler (KL) and Jensen-Shannon
(JS) divergences as the diversity metrics (see Sec. 2.2).

7 RQ1: Testing
This section first studies the correlation between the number of
(#) employed transformations and #ETIs in Sec. 7.1. Recall as intro-
duced in Sec. 6, all our transformations are capable of generating
ETIs. Then, in Sec. 7.2, we investigate how the testing procedure
is affected by using #ETIs as the testing guidance. In Sec. 7.3, we
show how to alleviate the encountered problems.

7.1 RQ1.1: Correlation Study
7.1.1 Setup. For each tested DNN, we first prepare 𝑁 different
transformations that can trigger mis-predictions and record the
#ETIs. In all setups w.r.t. the same dataset, we use the same seed
corpus comprising 500 different images. 𝑁 is gradually increased
from 10 to 1000. All experiments are conducted three times to
reduce randomness. We implement different testing pipelines for
objectives/metrics of distinct application scopes.
Accumulation Objectives.We categorize the coverage, adequacy,
and entropy objectives as accumulation objectives because they are
adopted for guiding the direction of accumulatingmutations (in case
the mutation does not lead to a mis-prediction). For these objectives,
we follow a standard fuzzing-like testing pipeline as in Alg. 1. We
set 𝑒𝑝𝑜𝑐ℎ to 5000 and in each loop iteration, an image is selected
from the seed corpus𝑋 according to its priority decided by 𝑝𝑟𝑖𝑜 . An
image’s 𝑝𝑟𝑖𝑜 is subtracted by 1 every time it is selected until 0 (i.e.,
this image will no longer be selected). The function 𝑜𝑏 𝑗𝑒𝑐𝑡𝑖𝑣𝑒 (𝑥 ′)
returns 𝑡𝑟𝑢𝑒 if 𝑥 ′ increases the coverage/adequacy/entropy.

Algorithm 1: Testing pipeline for accumulation objectives.
1 Transformation Set:𝑇 ; Seed Corpus: 𝑋 ; Tested DNN: 𝑓 ;
2 foreach 𝑥 ∈ 𝑋 do
3 𝑥.𝑝𝑟𝑖𝑜 ← 10;
4 for 𝑖 ← 0 to 𝑒𝑝𝑜𝑐ℎ by 1 do
5 𝑥 ← 𝑠𝑎𝑚𝑝𝑙𝑒_𝑤𝑖𝑡ℎ_𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 (𝑋) ; 𝑥.𝑝𝑟𝑖𝑜 ← 𝑥.𝑝𝑟𝑖𝑜 − 1;
6 𝑡 ← 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑒𝑙𝑒𝑐𝑡 (𝑇) ;
7 𝑥 ′ ← 𝑡 (𝑥) ; // total ‘𝑒𝑝𝑜𝑐ℎ’ mutations are performed.

8 if𝑚𝑖𝑠_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 (𝑥, 𝑥 ′) then
// record 𝑥 ′ as one ETI.

9 else if 𝑜𝑏 𝑗𝑒𝑐𝑡𝑖𝑣𝑒 (𝑥 ′) then
10 𝑥 ′.𝑝𝑟𝑖𝑜 ← 10; 𝑋 .𝑎𝑑𝑑 (𝑥 ′) ;

PrioritizationMetrics. The prioritization metrics are proposed to
prioritizemutated images such thatmis-predictions can be triggered
earlier. Therefore, to imitate the “selection” process (i.e., uncovering
mis-predictions without executing all mutated images), we perform
𝑒𝑝𝑜𝑐ℎ × 2 mutations (i.e., mutating each image 𝑥 in the initial seed
corpus 20 times to generate 20 different 𝑥 ′) and compute the priority
of each mutant 𝑥 ′ using the corresponding diversity metric. Total
5000 × 2 mutants 𝑥 ′ are sorted in descending order and only the
first 5000 mutants 𝑥 ′ are used to test DNNs.
Random Testing. We consider two versions of random testing
w.r.t. the accumulation and prioritization settings. The first one,
𝐴𝑅𝑎𝑛𝑑 , follows a similar pipeline as in Alg. 1, but the 𝑜𝑏 𝑗𝑒𝑐𝑡𝑖𝑣𝑒 (𝑥 ′)
at line 9 always returns 𝑡𝑟𝑢𝑒 . The second one, 𝑃𝑅𝑎𝑛𝑑 , follows a

Table 4: PCC values between #ETIs and 𝑁 . Results of non-
significant 𝑝-value (> 0.05) are marked in gray .

DNN ARand NC TKNC NLC LSC Entropy PRand KL JS
ResNet -0.96 -0.97 -0.98 -0.93 -0.95 -0.93 0.01 -0.02 0.12
VGG -0.95 -0.97 -0.96 -0.96 -0.98 -0.97 -0.01 0.04 -0.02
Inception -0.95 -0.94 -0.92 -0.86 -0.98 -0.84 0.03 -0.06 -0.06
MobileNet -0.93 -0.97 -0.94 -0.96 -0.95 -0.95 0.03 -0.08 -0.04
DenseNet -0.96 -0.96 -0.92 -0.88 -0.93 -0.81 0.04 -0.07 0.14
FaceNet -0.73 -0.74 -0.74 -0.70 -0.75 -0.74 0.13 -0.09 0.05
AlexNet -0.55 -0.73 -0.57 -0.12 -0.64 -0.66 0.13 0.00 0.09
EfficientNet -0.67 -0.71 -0.70 -0.61 -0.68 -0.76 -0.24 -0.04 0.12

similar setting as prioritization metrics (generates 5000× 2 mutants
𝑥 ′) but randomly selects 5000 mutants 𝑥 ′ to test the DNNs.
7.1.2 Study Methods. We perform both quantitative and qualita-
tive studies for the correlation between #ETIs and𝑁 (i.e., #employed
transformations). In the quantitative study, we compute the Pearson
correlation coefficient (PCC) of #ETIs and 𝑁 to quantify the corre-
lation. We also calculate the 𝑝-value to measure the significance.
The PCC value ranges within [−1, 1]: a positive PCC indicates that
#ETIs increases with 𝑁 , whereas #ETIs decreases with 𝑁 if their
PCC is negative. If the PCC value is within [−0.2, 0.2] and has 𝑝-
value > 0.05 [26, 53], we can safely conclude that #ETIs and 𝑁

are not correlated. We also plot how #ETIs changes with 𝑁 for
qualitative studies.
7.1.3 Results. In each experiment, we confirm that each of the
prepared transformations is selected at least once to perform muta-
tions. Table 4 shows the PCC values when testing various DNNs
with different objectives. Values of non-significant 𝑝-values (> 0.05)
are marked in gray . For prioritization metrics (i.e., KL and JS)
and 𝑃𝑅𝑎𝑛𝑑 , all PCC values are close to zero with non-significant
𝑝-values, indicating that #ETI and 𝑁 have no correlation. For ac-
cumulation objectives and 𝐴𝑅𝑎𝑛𝑑 , the PCC values are all negative
(most of them have significant 𝑝-values), which is surprising and
counterintuitive since #ETI decreases with 𝑁 . Fig. 4 plots how the
#ETI changes with 𝑁 ; we discuss the results as follows.
Overview. As shown in Fig. 4, regardless of the tested DNN, the
DNN’s task, the seed corpus, or the testing objective/metric, the
#ETIs does not increase with 𝑁 in all settings. We note that the
curves w.r.t. prioritization and accumulation paradigms have dis-
tinct trends, which we discuss below.
Prioritization Metrics. Although these metrics have a higher
#ETI than accumulation objectives in most cases, we do not com-
pare the absolute values of #ETI because when using prioritiza-
tion metrics, twice as many mutations are performed to simulate
the “selection” process (see Sec. 7.1.1). In general, the curves (e.g.,
Fig. 4(a)-(e)) are roughly horizontal lines.
AccumulationObjectives.When cross-comparing objectives, NLC
and Entropy seem to be the most two effective ones for finding
DNN errors, because when guided with them, the largest #ETIs is
generated in Fig. 4(a)-(e) and Fig. 4(h). Interestingly, we find that the
curves of accumulation objectives can be divided into two phases.wga When only a few transformations are prepared (e.g., 𝑁 < 200
for EfficientNet), #ETI decreases with 𝑁 . wgb When the number of
prepared transformations is large (e.g., 𝑁 > 300), the #ETI is mostly

ISSTA ’24, September 16–20, 2024, Vienna, Austria Yuanyuan Yuan, Shuai Wang, and Zhendong Su

(g) AlexNet (h) EfficientNet(f) FaceNet

(c) Inception(a) ResNet (b) VGG (d) MobileNet

(e) DenseNet

Figure 4: #ETIs (the vertical axis) w.r.t. the number of employed transformations 𝑁 (the horizontal axis). All employed trans-
formations are capable of triggering mis-predictions on the tested DNNs.

stable regardless of 𝑁 . Thus, the negative PCC value is mainly
induced by phase wga . We discuss these two phases and infer the
reasons below.

7.1.4 Analysis. The following conclusions can be derived.
The #ETIs is Not Positively Correlated With 𝑁 . For both the
prioritization objectives and the phase wgb of accumulation objec-
tives, #ETIs is not correlated with 𝑁 . That is, the number of em-
ployed transformations does not affect the #ETI. More specifically,
even when always testing a DNN with a few transformations, many
ETIs can still be triggered and their quantity is comparable to the
#ETIs when using far more transformations (that are capable of gen-
erating ETIs) — despite the latter more comprehensively explores
the DNN’s error space. Accordingly, the #ETIs hardly reflects the
comprehensiveness of testing. Even when a considerable amount
of ETIs are triggered, developers may still be unaware that many
transformations are capable of triggering DNN mis-predictions.

Recall that, as illustrated in Fig. 1, DNN errors stem from ill-
separated regions in the input space which comprises continu-
ous variables. Therefore, countless ETIs exist in any tiny-size, ill-
separate input region, making the #ETIs less useful than anticipated
and even misleading.
Accumulating Mutations is Misled in ETI-Oriented Testing.
To understand the decreased #ETI in phase wga of accumulation ob-
jectives, we inspect how accumulation objectives work. When a
mutation does not trigger mis-prediction, it is accumulated if it
enhances the chance of triggering mis-predictions in subsequent
mutations (e.g., increases the coverage or entropy, which is de-
cided by particular objectives). This way, an objective points an
“accumulating direction” to increase the possibility of triggering
mis-predictions, which also explains why more ETIs are generated
under the guidance of these objectives than 𝐴𝑅𝑎𝑛𝑑 (which ran-
domly chooses mutants). Nevertheless, as more transformations
are employed, such accumulations become less effective, because
the accumulated mutations for one transformation may not be ap-
plicable to others. For example, accumulating mutations for the

lighting transformation does not help to discover mis-prediction
under the rotation transformation.

7.2 RQ1.2: “Trapped” Testing
Further to the less efficacy of accumulating mutations, we study
how it affects the number of detected EPs in this section.

7.2.1 Setups & Study Methods. In this section, we focus on accu-
mulation objectives. The setups are mostly the same as in Sec. 7.1.
We equip each testing pipeline with all 1,988 transformations pre-
pared, and study how the number of detected EPs changes with the
testing epochs (i.e., the 𝑒𝑝𝑜𝑐ℎ in Alg. 1). Following Def. 2. an EP is
detected if mis-predictions are triggered by applying its corresponding
transformation on DNN inputs. It’s worth mentioning that when
performing prioritization-like testing, the #detected EPs is already
decided before testing because no runtime mutation is performed.
Thus, we do not evaluate these prioritization metrics in this section.

7.2.2 Results & Analysis. The curves of #detected EPs are drawn
as dashed lines in Fig. 5. As noted, the increasing rate of #detected
EPs drops when more testing epochs are performed. Even after
10,000 epochs, not all involved EPs are detected, and the #detected
EPs is even saturated as the increasing rate tends to be zero. This is
also induced by the accumulation of mutations. More specifically,
once a few EPs are detected, the testing tends to focus on these EPs
and repeatedly generate ETIs induced by these EPs. Knowledgeable
readers may notice that this phenomenon is seemingly similar to
the “coverage plateaus” studied in a recent work [36]. To clarify,
this observation is different from [36], which states that #ETIs in
software (Python) testing get saturated. Here, the DNN testing still
constantly generates ETIs, but the #detected EPs is saturated. That
is, the testing repeatedly uses explored transformations to generate
ETIs, neglecting other transformations and their associated EPs.

Since the ill-separated regions of different EPs may be discon-
nected, once a mutation reaches an ill-separated region, future
mutations will likely be “trapped” in this region due to two reasons.

See the Forest, not Trees: Unveiling and Escaping the Pitfalls of Error-Triggering Inputs in Neural Network Testing ISSTA ’24, September 16–20, 2024, Vienna, Austria

(a) ResNet (b) VGG (c) Inception (d) MobileNet (e) DenseNet

Figure 5: #Detected EPs (the vertical axis) w.r.t. #epochs (the horizontal axis). Results of previous and our testing methods are
marked in dashed and solid lines, respectively. Horizontal axes in different figures are aligned.

1) Again, countless ETIs exist in an ill-separated region, and there-
fore, new ETIs can always be reported (though they reveal only
one or a few EPs) since the testing aims to find more ETIs. 2) More
importantly, if a mutation moves outside an ill-separated region, it is
unlikely to be accumulated because suchmutations may not increase
the coverage/adequacy/entropy (i.e., get trapped). This phenome-
non is very obvious for NLC and Entropy: the corresponding testing
terminates easily between 4,000 and 6,000 epochs because all seeds
are exhausted. Recall as in Sec. 7.1.3, NLC and Entropy are shown
to be the most effective objectives to generate ETIs. Thus, it might
not be inaccurate to interpret that the impacts of “trapped testing”
is amplified when using more effective objectives, since moving
outside an ill-separated is more likely to be rejected by them.

In sum, this observation highlights a major issue neglected in
previous research: focusing on ETIs in (objective-guided) DNN
testing may be misleading and overlook many EPs because the
testing is “trapped” by already recognized EPs.

7.3 RQ1.3: Alleviating the Testing Problems
Solution. To mitigate the problems caused by ETIs, we propose a
simple yet effective regulation strategy for DNN testing: whenever
performing mutations, we always select transformations whose
associated input properties have not been deemed erroneous, i.e.,
no ETI has been found by mutating these properties. Thus, the
testing is forced to gradually find more EPs rather than ETIs. Once
an EP has been detected, it will never be considered in further
testing. This is reasonable since the root cause of mis-predictions
is the incorrect decision boundary and EPs are associated with
ill-separated regions in the input space: if a single ETI has been
found by mutating an EP, other ETIs evidently exist in the same
region and it is more meaningful to test other EPs instead.

Results. Our results are the solid lines in Fig. 5. With every objec-
tive, the #detected EPs is constantly growing without reduction
in the growth rate. An interesting finding is that, when detecting
only a few EPs, these solid and dashed lines are overlapped. This, to
some extent, explains why the “trapped testing” was previously not
obvious due to the incomprehensive set of transformations. Also, for
NLC and Entropy which are largely undermined by the “trapped
testing” (see Sec. 7.2.2), they remain the most effective objectives
after regulating the testing with our strategy. Moreover, in most of
the cases, the #epochs required to detect all EPs is less than twice
of the #all EPs (i.e., an EP can be detected by applying its corre-
sponding transformation less than two times on average), showing
the efficacy and efficiency of our strategy.

8 RQ2: Fine-Tuning
Fine-tuning with ETIs is previously believed an effective approach
to repairing the tested DNN’s mis-predictions. Nevertheless, a
counter-example is that, if two regions w.r.t. two EPs (correspond-
ing to two transformations) reside on opposite sides of the decision
boundary, enhancing the resilience towards one transformation
will presumably make the DNN less resilient to another one. There-
fore, these two EPs, and their corresponding transformations, are
mutually exclusive. RQ2 studies how this mutual exclusivity affects
the ETI-oriented fine-tuning; we use ETIs generated in Sec. 7.2.

8.1 RQ2.1: The Mutual Exclusivity
We first evaluate if the mutual exclusivity is common among input
properties targeted by different transformations.

8.1.1 Setups & Study Methods. The mutual exclusivity is studied
from two levels of granularity: 1) the types of transformations
and 2) the transformations themselves. When the fine-tuning loss
of one transformation decreases, we count the number of other
transformations whose fine-tuning loss rises. We also report the
distribution of these mutually exclusive transformations. Since
many more perception-based transformations are generated, we
randomly select 20 perception-based transformations, so that the
number of transformations in each category is comparable.

8.1.2 Results & Analysis. We report that for each transformation,
(50 ± 4)% of the remaining transformations are mutually exclusive.
For pixel-based transformations, their mutually exclusive transfor-
mations are mainly from other categories (i.e., style- and perception-
based). In contrast, the mutually exclusive transformations of the
other categories are evenly distributed among all categories (includ-
ing their own categories). We note that our findings are consistent
with observations in existing adversarial training works, which
pointed out that enhancing a DNN’s resilience towards one type
of adversarial perturbations (i.e., one transformation) can make it
more vulnerable to others (i.e., those mutually exclusive transforma-
tions/EPs) [14, 47, 55]. However, existing works are limited to only
a few transformations. We, by identifying a comprehensive set of
transformations, demonstrate that mutual exclusivity is pervasive
among different transformations/EPs and has significant impacts
on DNN fine-tuning.

8.2 RQ2.2: “Impaired” Resilience
This section studies how mutual exclusivity harms the DNN’s re-
silience towards certain transformations.

ISSTA ’24, September 16–20, 2024, Vienna, Austria Yuanyuan Yuan, Shuai Wang, and Zhendong Su

8.2.1 Setup & Study Methods. We begin with the standard fine-
tuning, which fine-tunes the DNN with all ETIs and is expected to
reduce the overall loss. Then, we observe how each transformation’s
fine-tuning loss varies. To further assess the effects of increased
fine-tuning loss (since increased loss does not necessarily indicate
lower resilience; see Sec. 8.3), we characterize the resilience towards
one transformation using random attack success rate (RASR), which
is the success rate of generating ETIs with random mutations (since
objective guided mutations have the countless inputs issue). That
is, RASR is comparable to 𝑃𝑅𝑎𝑛𝑑 (w/o prioritization) in Sec. 7.1.1
which is not affected by the accumulation. Recall that EPs are due to
ill-separated regions. RASR, to some extent, is similar to estimating
the area of ill-separated regions via Monte Carlo method [39].

8.2.2 Results & Analysis. Wefind that in all evaluations, the overall
fine-tuning loss decreases, which indicates the specious effective-
ness of ETI-oriented fine-tuning. However, if we separately compute
the fine-tuning loss for different transformations on the fine-tuned
DNN, ∼ 30% of them indeed increase largely. After checking their
generated ETIs when testing the original DNN, we find that those
transformations generate fewer ETIs (and hence contribute less to
the overall loss) in comparison to the other transformations.

To clarify, the fine-tuning loss is computed in a point-wise man-
ner, i.e., the overall loss is the average of loss values computed on all
ETIs. Hence, if one transformation generates more ETIs, which may
be due to the randomness during testing (as shown in RQ1, #ETI
does not faithfully reflect the resilience), the overall loss will be
more biased to this transformation. As a result, the fine-tuning pro-
cedure is “dominated” by those transformations generating more
ETIs. For example, if the testing is performed with two mutually
exclusive transformations and one of them generates 10% of ETIs,
the resilience towards this transformation is neglected to some
extent since it contributes only 10% to the overall loss value.

When evaluated using the RASR metric, an interesting finding is
that, for some EPs of decreased fine-tuning loss, their corresponding
RASR is not reduced obviously, and in some cases, the RASR remains
the same. That is, the chance of triggering mis-predictions is not
reduced despite the loss decrease; the fine-tuned DNN is not “safer.”
However, for EPs of increased fine-tuning loss, the RASR does not
necessarily rise as well. This observation motivates us to propose a
solution below for alleviating the issue of mutual exclusivity.

8.3 RQ2.3: Alleviating the Fine-Tuning Issue
Motivation. “Inconsistency” between the results of fine-tuning loss
and RASR inspires our solution here. In practice, to have a correct
and resilient prediction (i.e., the prediction does not change with
different transformations), the loss does not necessarily need to be
zero. An illustration is given in Fig. 6. For a two-class classification,
the case of zero loss for predicting class 1 is given in Fig. 6(a).
Nevertheless, since the final prediction is decided as the class having
the highest probability, a 100% probability is unnecessary. As shown
in Fig. 6(b), the prediction of class 1 remains the same, and also
resilient, if its probability ranges within [60%, 80%], which still has
notable loss. Therefore, for two mutually exclusive transformations,
we can orchestrate their fine-tuning losses at a moderate level to
make the DNN resilient to both transformations.

100%

0% 20%
60%

80%

class 1

prob. prob.

class 2 class 1 class 2

40%

(a) A prediction of class
1 with zero loss.

(b) Correct predictions
of non-zero loss.

EP2EP1

(c) Repairing by separately
considering EPs.

Figure 6: Motivations for alleviating the mutual exclusivity.

Table 5: Results of (minimal RASR, maximal RASR) after
fine-tuning. Lower RASR is better.

DNN Original Fine-tuned
with Eq. 1

Fine-tuned
with Eq. 6

ResNet (1.5%, 76.0%) (1.0%, 98.5%) (0, 67.5%)
VGG (10.0%, 78.5%) (2.5%, 99.0%) (0, 76.5%)
Inception (0, 85.0%) (12.0%, 100%) (0, 70.0%)
MobileNet (4.0%, 72.5%) (3.0%, 99.0%) (0, 61.0%)
DenseNet (5.5%, 91.5%) (0.5%, 65.5%) (0, 56.0%)
FaceNet (44.5%, 88.0%) (43.5%, 97.0%) (37.5%, 75%)
AlexNet (0, 68.0%) (0, 85.0%) (0, 30.0%)
EfficientNet (24.5%, 90.0%) (23.0%, 100%) (20.5%, 62.5%)
Average (11.3%, 81.2%) (10.6%, 93.0%) (7.2%, 62.3%)

* Increased RASR after fine-tuning (i.e., becomes less resilient) are marked in red
and reduced RASR are marked in green.

Solution. Though the fine-tuning loss cannot precisely character-
ize the resilience to a transformation, we still use it for fine-tuning
because it is continuous (RASR is discrete and cannot be used as
an optimization objective during fine-tuning). Unlike Eq. 1, we sep-
arately compute the fine-tuning loss for ETIs generated with each
transformation, as shown below.

𝐿𝑖 =
1
|𝐷 |

∑
(𝑥,𝑦) ∈𝐷

[
max

𝑥 ′∼𝑡𝑖 (𝑥)
𝐿(𝑓𝜃 (𝑥 ′), 𝑦)

]
, (6)

where 𝑡𝑖 denotes the 𝑖-th transformation. Then, the fine-tuning
aims to minimize a transformation-/EP-wise loss:

∑
𝑖 𝐿

𝑖 .
This way, different EPs are treated equally during the fine-tuning.

Note that the #ETIs (generated during testing) does not quantify
the resilience w.r.t. one EP (see Sec. 7). Rather, more ETIs estimates
the fine-tuning loss better. As illustrated in Fig. 6(c), no matter
how ETIs are distributed, the fine-tuned decision boundary is not
biased to any EP. Despite that the overall fine-tuning loss is not the
minimal, the predictions of the two classes are correct and resilient,
as long as the decision boundary stays outside the dashed regions.
Results. Evaluation results are given in Table 5. We report the max-
imal and the minimal RASR of different transformations computed
on DNNs “repaired” using the standard form of fine-tuning (as in
Eq. 1) vs. our approach (as in Eq. 6). Each experiment is repeated
three times. As marked by the red results in Table 5, the standard
approach largely increases the maximal RASR in 7 out of 8 cases,
and some of them even reach 100% (e.g., Inception and EfficientNet).
Moreover, the original Inception is relatively resilient to some trans-
formations (since the minimal RASR is zero), whereas the minimal
RASR is notably increased to 12.0%, making it sensitive to almost
all transformations.

Our approach notably reduces the maximal RASR, i.e., the DNN
is no longer fragile to certain transformations. This shows that our

See the Forest, not Trees: Unveiling and Escaping the Pitfalls of Error-Triggering Inputs in Neural Network Testing ISSTA ’24, September 16–20, 2024, Vienna, Austria

approach does not sacrifice the resilience towards certain transfor-
mations. The minimal RASR is also highly encouraging, given that
all minimal RASRs decrease, and the lowest is zero for 6 out of 8
cases. Importantly, all our fine-tuned DNNs retain their original
test accuracy (using the standard dataset).

Note that transformations having the minimal original RASR
may only generate a few ETIs during testing. Thus, when fine-
tuning with previous objectives (Eq. 1), they are often neglected. As
a result, the DNN may become more sensitive to these transforma-
tions after fine-tuning. Nevertheless, our fine-tuning scheme treats
each transformation equally, such that it can successfully repair
those “stealthily erroneous” properties.

9 Discussion
Threat to Validity. This research unveils the pitfalls of ETIs in
DNN testing (and fine-tuning) and accordingly proposes EP-oriented
enhancement. One threat is that the evaluated DNNs, datasets, and
testing/fine-tuning methods may be biased. To mitigate this threat,
we select DNNs that have been widely studied in DNN testing and
incorporated into mature commercial products. For example, the
residual connection [24] in ResNet is the building block for nearly
all modern DNNs and related systems, e.g., Detectron [3] and recent
LLMs [4, 43]. ImageNet is almost the largest public dataset and is the
golden standard to benchmark DNNs [46]. Our technical pipeline is
not tailored to specific DNNs/datasets. Our evaluated testing meth-
ods (e.g., random, fuzzing-like, and prioritization-based testing) and
objectives (e.g., structure and distribution-based coverage, adequacy,
and diversity metrics) cover most recent works [33, 38, 42, 54, 62, 63,
68, 71]. The evaluated fine-tuning is the standard and fundamental
form, and is widely adopted to repair DNNs [33, 40, 59, 65, 68, 69].

Another threat is that our adopted transformations may not
be comprehensive. We mitigate this threat by considering, to the
best of our knowledge, all pixel- and style-based transformations
adopted in existing works [42, 54, 62, 63, 68, 71]. In addition, when
identifying (local) perception-based transformations, we iteratively
generate transformations on perceptions of different hierarchies,
as introduced in Sec. 4.2 and illustrated in Fig. 3. Moreover, as
mentioned in Sec. 6, we augment existing transformations with
thousands of new (perception-based) transformations, and the di-
versity of these new transformations are ensured via a relatively
strict deduplication process (Sec. 4.2); we believe such a large num-
ber (∼ 2K vs. ∼ 10 in prior works) is a strong indicator of the
comprehensiveness of our transformations.

Text (NLP) DNNs. Text DNNs’ tasks also belong to classification
or regression, and the internal logics are reflected as decision bound-
aries. In addition, inputs of text DNNs are word embeddings, which
are floating-point vectors as images. Furthermore, given that our
unveiled issues are due to the use of ETIs, not specific DNNs/tasks,
it should be accurate to conclude that our findings are also ap-
plicable to text DNNs to a great extent. Currently, the testing of
text DNNs is not comprehensively studied and is not as general
as testing image DNNs. Most works focus on specific tasks (e.g.,
machine translation [25]) and their proposed input transformations
cannot be used interchangeably. We note that contemporary works
also use generative models to mutate text [69]; since our transfor-
mation generation techniques are out-of-the-box and agnostic to

the generative model’s implementation, it should be promising to
generate comprehensive generic text transformations for future
testing works using our techniques.
Textual Annotations for Transformations.While consistency
and uniqueness evaluated in this study are sufficient to ensure
the correctness of transformations in DNN testing, our currently
generated transformations lack textual descriptions. Automatically
annotating such descriptions should be an interesting future direc-
tion, as developers may require interpreting DNN errors. Although
multi-modal LLMs are unable to automatically generate transforma-
tions (see Sec. 6), we foresee their high potential in complementing
our generation technique by providing textual interpretations.
EP and Diversity. EPs can holistically reflect the diversity of DNN
errors. However, we clarify that EP considered in this research is
different from the “diversity property” studied previously. Previous
works estimate the diversity of ETIs (e.g., via ETI’s entropy [23],
belonging classes [68], or clusters [5]). Nevertheless, conventional
diversity metrics are calculated input-wise. Thus, merely differ-
ent ETIs (generated using one transformation) can increase their
diversity scores.
Distribution Shift Due to Transformations. As DNNs often as-
sume that training and test data follow the same data distribution,
it is expected that transformations adopted in testing do not in-
duce distribution shift (i.e., producing out-of-distribution inputs). In
essence, mis-predictions triggered by out-of-distribution inputs in-
dicate incorrect usage of DNNs, not DNN errors. We clarify that our
augmented perception-based transformations should not change
the original data distribution. These transformations, to some ex-
tent, can be seen as the results of interpolation and extrapolation
among perceptions of the generative model’s training data. For
instance, transformations for the face orientation are generated
because the generative model’s training data have both left- and
right-oriented faces. In that sense, we cannot generate transforma-
tions for the face orientation if the generative model training data
are all left-oriented. Since the generative model and the tested DNN
use the same training data (i.e., the developer’s data), our trans-
formations will not bring new perceptions that do not exist in the
tested DNN’s training data (i.e., out-of-distribution perceptions).

10 Conclusion
This paper unveils that ETI-oriented testing frequently generates
similar ETIs and neglects many DNN errors. The ETI-based fine-
tuningmay impair DNNs. By generating comprehensive input trans-
formations, we show the advantage of EP-oriented DNN testing
and fine-tuning. Large-scale evaluations show that our approaches
can effectively detect and repair DNN errors.

Acknowledgments
We thank the anonymous ISSTA reviewers for their insightful and
constructive comments. We also thank all participants in our pilot
study for contributing to the evaluation data. The HKUST authors
were supported in part by a RGC GRF grant under the contract
16214723 and a RGC CRF grant under the contract C6015-23G.

References
[1] [n. d.]. Amazon Mechanical Turk. https://www.mturk.com/.
[2] [n. d.]. Artifact. https://github.com/Yuanyuan-Yuan/EP-DNN-testing.

https://www.mturk.com/
https://github.com/Yuanyuan-Yuan/EP-DNN-testing

ISSTA ’24, September 16–20, 2024, Vienna, Austria Yuanyuan Yuan, Shuai Wang, and Zhendong Su

[3] [n. d.]. Detectron2: Facebook AI Research’s platform for object detection and
semantic segmentation. https://ai.facebook.com/tools/detectron2/.

[4] OpenAI (2023). 2023. GPT-4 Technical Report. (2023).
[5] Mohammed Attaoui, Hazem Fahmy, Fabrizio Pastore, and Lionel Briand. 2023.

Black-box safety analysis and retraining of DNNs based on feature extraction
and clustering. ACM Transactions on Software Engineering and Methodology 32, 3
(2023), 1–40.

[6] Andrew Brock, Jeff Donahue, and Karen Simonyan. 2018. Large Scale GAN
Training for High Fidelity Natural Image Synthesis. In International Conference
on Learning Representations.

[7] Taejoon Byun and Sanjai Rayadurgam. 2020. Manifold for machine learning as-
surance. In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering: New Ideas and Emerging Results. 97–100.

[8] Tsong Y Chen, Shing C Cheung, and Shiu Ming Yiu. 1998. Metamorphic testing: a
new approach for generating next test cases. Technical Report. Technical Report
HKUST-CS98-01, Department of Computer Science, HKUST.

[9] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. 2020. StarGAN
v2: Diverse Image Synthesis for Multiple Domains. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition.

[10] John M Danskin. 2012. The theory of max-min and its application to weapons
allocation problems. Vol. 5. Springer Science & Business Media.

[11] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. 2009. ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR09.

[12] Swaroopa Dola, Matthew B Dwyer, and Mary Lou Soffa. 2021. Distribution-
aware testing of neural networks using generative models. In 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). IEEE, 226–237.

[13] Isaac Dunn, Hadrien Pouget, Daniel Kroening, and Tom Melham. 2021. Exposing
previously undetectable faults in deep neural networks. In ISSTA 2021.

[14] Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Alek-
sanderMadry. 2019. Exploring the landscape of spatial robustness. In International
conference on machine learning. PMLR, 1802–1811.

[15] Yang Feng, Qingkai Shi, Xinyu Gao, Jun Wan, Chunrong Fang, and Zhenyu
Chen. 2020. Deepgini: prioritizing massive tests to enhance the robustness of
deep neural networks. In Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 177–188.

[16] Joseph L Fleiss. 1971. Measuring nominal scale agreement among many raters.
Psychological bulletin 76, 5 (1971), 378.

[17] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A.
Wichmann, and Wieland Brendel. 2019. ImageNet-trained CNNs are biased
towards texture; increasing shape bias improves accuracy and robustness.. In
International Conference on Learning Representations.

[18] Simos Gerasimou, Hasan Ferit Eniser, Alper Sen, and Alper Cakan. 2020.
Importance-driven deep learning system testing. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering. 702–713.

[19] Gene H Golub and Christian Reinsch. 1971. Singular value decomposition and
least squares solutions. Linear algebra 2 (1971), 134–151.

[20] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems. 2672–2680.

[21] Chuan Guo, Jacob Gardner, Yurong You, Andrew Gordon Wilson, and Kilian
Weinberger. 2019. Simple black-box adversarial attacks. In International Confer-
ence on Machine Learning. PMLR, 2484–2493.

[22] Jianmin Guo, Yu Jiang, Yue Zhao, Quan Chen, and Jiaguang Sun. 2018. Dlfuzz: Dif-
ferential fuzzing testing of deep learning systems. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 739–743.

[23] Fabrice Harel-Canada, Lingxiao Wang, Muhammad Ali Gulzar, Quanquan Gu,
and Miryung Kim. 2020. Is neuron coverage a meaningful measure for testing
deep neural networks?. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 851–862.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In CVPR. 770–778.

[25] Pinjia He, Clara Meister, and Zhendong Su. 2020. Structure-invariant testing for
machine translation. In Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering. 961–973.

[26] James F Hemphill. 2003. Interpreting the magnitudes of correlation coefficients.
(2003).

[27] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[28] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
2017. Densely connected convolutional networks. In CVPR.

[29] Zhenlan Ji, Pingchuan Ma, Yuanyuan Yuan, and Shuai Wang. 2023. CC: Causality-
aware coverage criterion for deep neural networks. In 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE). IEEE, 1788–1800.

[30] Sungmin Kang, Robert Feldt, and Shin Yoo. 2023. Deceiving Humans and Ma-
chines Alike: Search-based Test Input Generation for DNNs using Variational
Autoencoders. ACM Transactions on Software Engineering and Methodology
(2023).

[31] Hamid Karimi, Tyler Derr, and Jiliang Tang. 2019. Characterizing the decision
boundary of deep neural networks. arXiv preprint arXiv:1912.11460 (2019).

[32] Tero Karras, Samuli Laine, and Timo Aila. 2019. A style-based generator ar-
chitecture for generative adversarial networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 4401–4410.

[33] Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding deep learning system
testing using surprise adequacy. In 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE). IEEE, 1039–1049.

[34] Jinhan Kim, Jeongil Ju, Robert Feldt, and Shin Yoo. 2020. Reducing dnn labelling
cost using surprise adequacy: An industrial case study for autonomous driving.
In Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 1466–
1476.

[35] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2017. Imagenet classi-
fication with deep convolutional neural networks. Commun. ACM 60, 6 (2017),
84–90.

[36] Caroline Lemieux, Jeevana Priya Inala, Shuvendu K Lahiri, and Siddhartha Sen.
2023. CODAMOSA: Escaping Coverage Plateaus in Test Generation with Pre-
trained Large Language Models. In 45th International Conference on Software
Engineering, ser. ICSE.

[37] Ziwei Liu, Ping Luo, XiaogangWang, and Xiaoou Tang. 2015. Deep Learning Face
Attributes in the Wild. In Proceedings of International Conference on Computer
Vision (ICCV).

[38] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang
Chen, Ting Su, Li Li, Yang Liu, et al. 2018. Deepgauge: Multi-granularity testing
criteria for deep learning systems. In ASE 2018.

[39] Nicholas Metropolis and Stanislaw Ulam. 1949. The monte carlo method. Journal
of the American statistical association 44, 247 (1949), 335–341.

[40] Qi Pang, Yuanyuan Yuan, and Shuai Wang. 2022. MDPFuzz: testing models
solving Markov decision processes. In Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis. 378–390.

[41] Qi Pang, Yuanyuan Yuan, and Shuai Wang. 2024. MPCDiff: Testing and Repairing
MPC-Hardened Deep Learning Models. NDSS.

[42] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deepxplore: Au-
tomated whitebox testing of deep learning systems. In proceedings of the 26th
Symposium on Operating Systems Principles. 1–18.

[43] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018.
Improving language understanding by generative pre-training. (2018).

[44] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. " Why should i
trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data mining.
1135–1144.

[45] Vincenzo Riccio and Paolo Tonella. 2023. When and why test generators for
deep learning produce invalid inputs: an empirical study. In 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE). IEEE, 1161–1173.

[46] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
2015. Imagenet large scale visual recognition challenge. International journal of
computer vision 115, 3 (2015), 211–252.

[47] Lukas Schott, Jonas Rauber, Matthias Bethge, andWieland Brendel. 2018. Towards
the first adversarially robust neural network model on MNIST. In International
Conference on Learning Representations.

[48] Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. Facenet: A
unified embedding for face recognition and clustering. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 815–823.

[49] Julius Sim and Chris C Wright. 2005. The kappa statistic in reliability studies:
use, interpretation, and sample size requirements. Physical therapy (2005).

[50] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[51] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. 2016. Rethinking the inception architecture for computer vision. In CVPR.

[52] Mingxing Tan and Quoc Le. 2019. Efficientnet: Rethinking model scaling for
convolutional neural networks. In International conference on machine learning.
PMLR, 6105–6114.

[53] Richard Taylor. 1990. Interpretation of the correlation coefficient: a basic review.
Journal of diagnostic medical sonography 6, 1 (1990), 35–39.

[54] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest: Automated
testing of deep-neural-network-driven autonomous cars. In Proceedings of the
40th international conference on software engineering. 303–314.

[55] Florian Tramer and Dan Boneh. 2019. Adversarial training and robustness for
multiple perturbations. Advances in neural information processing systems 32
(2019).

https://ai.facebook.com/tools/detectron2/

See the Forest, not Trees: Unveiling and Escaping the Pitfalls of Error-Triggering Inputs in Neural Network Testing ISSTA ’24, September 16–20, 2024, Vienna, Austria

[56] Zhuozhuo Tu, Jingwei Zhang, and Dacheng Tao. 2019. Theoretical analysis
of adversarial learning: A minimax approach. Advances in Neural Information
Processing Systems 32 (2019).

[57] Jonathan Uesato, Brendan O’donoghue, Pushmeet Kohli, and Aaron Oord. 2018.
Adversarial risk and the dangers of evaluating against weak attacks. In Interna-
tional Conference on Machine Learning. PMLR, 5025–5034.

[58] Jingyi Wang, Jialuo Chen, Youcheng Sun, Xingjun Ma, Dongxia Wang, Jun Sun,
and Peng Cheng. 2021. Robot: Robustness-oriented testing for deep learning
systems. In 2021 IEEE/ACM 43rd International Conference on Software Engineering
(ICSE). IEEE, 300–311.

[59] Shuai Wang and Zhendong Su. 2020. Metamorphic object insertion for test-
ing object detection systems. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering. 1053–1065.

[60] Zan Wang, Hanmo You, Junjie Chen, Yingyi Zhang, Xuyuan Dong, and Wenbin
Zhang. 2021. Prioritizing test inputs for deep neural networks via mutation
analysis. In 2021 IEEE/ACM 43rd International Conference on Software Engineering
(ICSE). IEEE, 397–409.

[61] Yi-Lun Wu, Hong-Han Shuai, Zhi-Rui Tam, and Hong-Yu Chiu. 2021. Gradient
normalization for generative adversarial networks. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 6373–6382.

[62] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun
Zhao, Bo Li, Jianxiong Yin, and Simon See. 2019. Deephunter: a coverage-guided
fuzz testing framework for deep neural networks. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis. 146–157.

[63] Xiaoyuan Xie, Pengbo Yin, and Songqiang Chen. 2022. Boosting the Revealing
of Detected Violations in Deep Learning Testing: A Diversity-Guided Method. In
ASE 2022.

[64] Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao,
Wentao Zhang, Bin Cui, and Ming-Hsuan Yang. 2023. Diffusion models: A
comprehensive survey of methods and applications. Comput. Surveys 56, 4 (2023),
1–39.

[65] Boxi Yu, Zhiqing Zhong, Xinran Qin, Jiayi Yao, Yuancheng Wang, and Pinjia
He. 2022. Automated testing of image captioning systems. In Proceedings of the
31st ACM SIGSOFT International Symposium on Software Testing and Analysis.
467–479.

[66] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong
Xiao. 2015. Lsun: Construction of a large-scale image dataset using deep learning
with humans in the loop. arXiv preprint arXiv:1506.03365 (2015).

[67] Yuanyuan Yuan, Qi Pang, and Shuai Wang. 2022. Unveiling Hidden DNN De-
fects with Decision-Based Metamorphic Testing. In 37th IEEE/ACM International
Conference on Automated Software Engineering. 1–13.

[68] Yuanyuan Yuan, Qi Pang, and Shuai Wang. 2023. Revisiting neuron coverage for
dnn testing: A layer-wise and distribution-aware criterion. In 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE). IEEE, 1200–1212.

[69] Yuanyuan Yuan, Qi Pang, and Shuai Wang. 2024. Provably Valid and Diverse
Mutations of Real-World Media Data for DNN Testing. IEEE Transactions on
Software Engineering (2024).

[70] Yuanyuan Yuan, Shuai Wang, Mingyue Jiang, and Tsong Yueh Chen. 2021. Per-
ception matters: Detecting perception failures of vqa models using metamorphic
testing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 16908–16917.

[71] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khur-
shid. 2018. DeepRoad: GAN-based metamorphic testing and input validation
framework for autonomous driving systems. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. 132–142.

[72] Zhiming Zhou, Jiadong Liang, Yuxuan Song, Lantao Yu, Hongwei Wang, Weinan
Zhang, Yong Yu, and Zhihua Zhang. 2019. Lipschitz generative adversarial nets.
In International Conference on Machine Learning. PMLR, 7584–7593.

[73] Jiapeng Zhu, Ruili Feng, Yujun Shen, Deli Zhao, Zheng-Jun Zha, Jingren Zhou, and
Qifeng Chen. 2021. Low-rank subspaces in gans. Advances in Neural Information
Processing Systems 34 (2021), 16648–16658.

[74] Jiapeng Zhu, Yujun Shen, Yinghao Xu, Deli Zhao, and Qifeng Chen. 2022. Region-
Based Semantic Factorization in GANs. In International Conference on Machine
Learning. PMLR, 27612–27632.

[75] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. 2017. Unpaired
image-to-image translation using cycle-consistent adversarial networks. In Pro-
ceedings of the IEEE international conference on computer vision. 2223–2232.

Received 2024-04-12; accepted 2024-07-03

	Abstract
	1 Introduction
	2 Preliminaries and Terminologies
	2.1 Input Transformations and EPs
	2.2 DNN Testing Methods
	2.3 DNN Fine-Tuning

	3 Research Overview
	4 Generating Input Transformations
	4.1 Editing Perceptual Properties
	4.2 Identifying Transformable Perceptions

	5 Pilot Study
	6 Evaluation Setup
	7 RQ1: Testing
	7.1 RQ1.1: Correlation Study
	7.2 RQ1.2: ``Trapped'' Testing
	7.3 RQ1.3: Alleviating the Testing Problems

	8 RQ2: Fine-Tuning
	8.1 RQ2.1: The Mutual Exclusivity
	8.2 RQ2.2: ``Impaired'' Resilience
	8.3 RQ2.3: Alleviating the Fine-Tuning Issue

	9 Discussion
	10 Conclusion
	References

