
HyperTheft: Thieving Model Weights from TEE-Shielded
Neural Networks via Ciphertext Side Channels

Yuanyuan Yuan
The Hong Kong University of Science

and Technology
Hong Kong, China
yyuanaq@cse.ust.hk

Zhibo Liu
The Hong Kong University of Science

and Technology
Hong Kong, China
zliudc@cse.ust.hk

Sen Deng
The Hong Kong University of Science

and Technology
Hong Kong, China
sdengan@cse.ust.hk

Yanzuo Chen
The Hong Kong University of Science

and Technology
Hong Kong, China
ychenjo@cse.ust.hk

Shuai Wang
The Hong Kong University of Science

and Technology
Hong Kong, China
shuaiw@cse.ust.hk

Yinqian Zhang
Southern University of Science and

Technology
Shenzhen, China
yinqianz@acm.org

Zhendong Su
ETH Zurich

Zurich, Switzerland
zhendong.su@inf.ethz.ch

Abstract

Trusted execution environments (TEEs) are widely employed to
protect deep neural networks (DNNs) from untrusted hosts (e.g.,
hypervisors). By shielding DNNs as fully black-box via encryption,
TEEs mitigate model weight leakage and its follow-up white-box at-
tacks. However, this paper uncovers that the confidentiality of TEE-
shielded DNNs can be violated due to an emerging threat towards
TEEs: ciphertext side channels of TEEs create weight-dependent
observations during a DNN’s execution. Despite the potential of
inferring DNN weights from ciphertext side channels, existing tech-
niques are inapplicable due to their over-strong requirements and
the high precision required by DNN weights. A DNN can have
millions of weight elements, and even a few incorrectly recovered
weight elements may make the DNN non-functional.

We propose a novel viewpoint that focuses on the functionality
of DNN weights, rather than each weight element’s exact value.
Accordingly, we design HyperTheft to directly generate weights
that are functionality-equivalent to the victim DNN using cipher-
text side channels. HyperTheft is established for highly practical
settings; it exhibits the weakest requirement compared to prior
methods. When only knowing a victim DNN’s input type and task
type (which are public and denote theminimal information required
to use a DNN), HyperTheft can recover its weight using cipher-
text side channels logged during the victim DNN’s one execution.
The whole procedure does not require attackers to 1) query the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3690317

victim DNN, 2) have valid data that the DNN accepts, or 3) know
the victim DNN’s structure. Our evaluations generate more than 8K
DNN weights which constantly achieve 77%∼97% test accuracy in
different DNN runtimes, including various versions of PyTorch and
DNN executables. Our recovered weights can subsequently enable
training data leakage and severe bit-flip attacks.

CCS Concepts

• Security and privacy→ Side-channel analysis and counter-

measures;

Keywords

Ciphertext side channel, Trusted execution environment, Model
stealing, Hypernetwork

ACM Reference Format:

Yuanyuan Yuan, Zhibo Liu, Sen Deng, Yanzuo Chen, Shuai Wang, Yinqian
Zhang, and Zhendong Su. 2024.HyperTheft: Thieving ModelWeights from
TEE-Shielded Neural Networks via Ciphertext Side Channels. In Proceedings
of the 2024 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’24), October 14–18, 2024, Salt Lake City, UT, USA. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3658644.3690317

1 Introduction

Deep neural networks (DNNs) have been exponentially deployed
on various platforms (e.g., cloud servers, edge devices) given their
high intelligence in solving real-life tasks. DNNs’ intelligence is en-
coded in their weights which are trained over humongous datasets,
with extensive human expertise and computing resources required.
Nevertheless, as DNNs are white-box accessible on the host ma-
chine, a malicious host can directly copy their weights to steal DNN
intelligence and launch white-box attacks [66, 79], posing a major
security and privacy threat to modern DNNs [36].

To address the trust concern, Trusted Execution Environment
(TEE), such as AMD SEV [35], Intel SGX [31, 33], etc., is proposed to

https://doi.org/10.1145/3658644.3690317
https://doi.org/10.1145/3658644.3690317

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yuanyuan Yuan et al.

protect DNNs [29, 41, 46]. With memory encryption, TEE provides
isolated execution to shield a DNN as fully black-box on the host
machine. Although recent studies launched successful side-channel
attacks on TEE-shielded programs based on their secret-dependent
information flows [24, 53, 69], DNN weights are believed secure
under TEE protection: modern DNNs implement a constant-time
computation paradigm, where the computations are achieved as a
sequence of matrix operations with constant1 data/control flows,
eliminating mainstream micro-architecture side channels [27, 79].

Despite the promise, this paper uncovers severe DNN weight
leakage due to the ciphertext side channel [42, 43] recently dis-
closed in AMD SEV.2 Essentially, modern TEEs adopt deterministic
encryption to support efficient random memory access and large
memory encryption [17, 42], and the ciphertext of each memory
write value only depends on the plaintext and the written address.
Hence, if attackers observe that the ciphertexts of two consecutive
memory writes at the same address do not change (i.e., ciphertext
collision), they can infer the equality relation between two plaintext
written values [42, 43]. Intuitively, as matrix computations inside a
DNN involve nested loops with DNN weights, which often repeat-
edly access the same memory address, ciphertext collisions should
correlate with DNN weights to a large extent.

Yet, recovering DNN weights from ciphertext collisions is inher-
ently challenging due to the following reasons.
① A More Challenging Threat Model. Unlike cryptographic
software (i.e., the attack target of prior ciphertext side-channel
attacks [42, 43]) whose implementation details are known to at-
tackers (e.g., the RSA algorithm is public), the computation graphs
of DNNs are often private. Thus, attackers only have a ciphertext
side channel trace consisting of all ciphertext collisions logged
from the victim DNN’s whole execution. They cannot investigate
how each weight element is involved in DNN computations and is
consequently leaked via each ciphertext collision.
② Partial Leakage of DNNWeights. The ciphertext side-channel
leakage in cryptographic software is lossless, as it is due to memory
writes directly determined by each private key bit [42, 43]. How-
ever, memory writes of a DNN’s execution rely on intermediate
computing results derived from the weight, ciphertext collisions
therefore do not leak all weight elements. Since a DNN often has
millions of weight elements which are highly correlated, failing to
recover a few weight elements can result in non-functional DNNs
whose predictions are purely random [62, 75].
③ Over-Strong Requirements of Query Attacks.One may con-
duct query-based attacks, which use a student model to duplicate
confidence scores of a DNN’s predictions over query inputs [12,
32, 58, 68], to imitate the victim DNN’s behaviors. However, TEE-
shielded DNNs do not return confidence scores, greatly increasing
the cost of query-based attacks [79]. While recent hardware at-
tacks can be adopted to reduce the cost by recovering partial DNN
weights, they require knowing the DNN’s structure (which can
be private) and are limited to quantized DNNs [61]. Importantly,
1Recent works have proposed the multi-exit DNN [47] whose execution may terminate
early for some inputs. However, multi-exit DNN’s control and data flows only depend
on the final predictions and do not leak DNN weights.
2Practical attacks have been demonstrated on AMD SEV and reported to the vendor;
yet, the attacks are feasible to any deterministic-encryption-based TEEs via hardware
attacks such as memory bus snooping [40], cold boot attack [25], etc.

the query inputs must cover all classes of the victim DNN’s train-
ing data, which is impractical if the DNN is trained on private
datasets like medical images. Noteworthy, training a student model
to generate identical ciphertext collisions as the victim DNN is also
infeasible, as the generation of ciphertext is non-differentiable.
Solution: ANewPerspective ofDNNWeights. This paper takes
a holistic view on DNN weights by considering the victim DNN’s
functionality of solving its intended task. Instead of recovering exact
weight elements (i.e., conventional ciphertext side-channel attacks)
or duplicating a DNN’s predictions for specific inputs (i.e., prior
query-based attacks), we present a novel and highly effective tech-
nique to represent and extract functionalities from ciphertext side
channels of unknownDNNs performing unknown tasks. Specifically,
we design a hyper-network, HyperTheft, that takes ciphertext col-
lisions logged from the victim DNN’s execution (i.e., a ciphertext
side-channel trace) as inputs and directly outputs functional weights
for a surrogate model. With weights generated from HyperTheft,
the surrogate model is able to solve the victim DNN’s task. The
surrogate model may have the same or different structure as the
victim DNN, depending on the attacker’s knowledge.

HyperTheft delivers highly stealthy and generic attacks. It con-
siders both regression and classification, two fundamental tasks
of all modern DNN applications such as image recognition, dis-
ease diagnosis, financial forecast, etc. To attack a DNN performing
regression or binary classification, HyperTheft only requires ci-
phertext collisions from its one execution. For 𝑘-class classification
(𝑘 > 2) — in case 𝑘 is unknown — HyperTheft decouples it as
𝑘 different binary classifications (i.e., belonging to the 𝑘-th class
or not), and generates weights for 𝑘 surrogate models (with each
one for a binary classification) by observing the victim DNN’s
(minimal) 𝑘 executions. Further, inspired by stochastic training al-
gorithms of DNNs (e.g., SGD [2]), we introduce stochasticity into
HyperTheft’s weight generation, such that multiple functionality-
equality weights can be generated using only one side-channel
trace; the corresponding surrogate models (for the same task) can
form a majority voting to further improve their accuracy.
Practicality: The Weakest Knowledge. Distinct from all prior
weight stealing techniques, HyperTheft does not interact with the
victim DNN; it only passively observes ciphertext side channels
without querying the victim DNN. Thanks to our well-designed
training algorithm for hyper-network (see Sec. 6), HyperTheft
does not require valid data accepted by the victim DNN (com-
pared with query-based attacks). Additionally, empowered by our
functionality-centric view,HyperTheft does not rely on the victim
DNN’s structure and is applicable to general DNNs (compared with
prior hardware attacks [61, 76]). In Sec. 8.2, we employHyperTheft
to generate more than 8K weights under this weakest-knowledge
setup, and these weights constantly achieve 77%∼97% test accuracy.
To comprehensively assess the real-world threats, Sec. 8.3 evaluates
how those stronger assumptions in prior works, e.g., knowing the
DNN structure or querying the DNN (which may hold in certain
scenarios), can further boost HyperTheft.
Findings: Broad Attack Surface. HyperTheft can successfully
steal weights from popular DNNs (e.g., Transformer, ResNet, etc.)
performing various classification and regression tasks over repre-
sentative datasets (e.g., ImageNet, Chest X-ray, etc.). We consider

HyperTheft: Thieving Model Weights from TEE-Shielded Neural Networks via Ciphertext Side Channels CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

different runtimes of DNNs: the most popular deep learning (DL)
framework PyTorch and the recent DL compiler, Glow [64], that
compiles DNN models into executables. We also systematically
evaluate various versions of PyTorch and consider different usages
of TEEs (i.e., shielding full DNNs or DNN slices). Our recovered
weights constantly achieve the objectives of stealing DNN intel-
ligence and enabling white-box attacks against the victim DNN.
Although the recovered weights are never trained using the victim
DNN’s training data, they largely enhance membership inference
attack [8, 66] to leak the training data. The recovered weights also
bring bit-flip attack [62, 75], which can globally decimate DNN
intelligence for nearly all (benign) inputs. In sum, this paper makes
the following contributions:
• For the first time, we unveil the high risk of leaking DNNweights
via ciphertext side channels of TEE-shielded DNNs, despite that
weights in vanilla DNNs (unprotected by TEEs) are free of main-
stream micro-architecture side channels. We demonstrate that
such weight leakage subsequently enables stealing DNN intelli-
gence and launching white-box DNN attacks.

• To overcome technical hurdles of recovering DNN weights, we
propose to directly generate functionality-equivalent weights
from ciphertext side channels. We design HyperTheft, which
can recover DNN weights passively with only negligible and
the weakest knowledge of the victim DNN. HyperTheft applies
to general DNNs and is capable of recovering DNN weights by
observing only a few executions of the victim DNN.

• We comprehensively evaluate diverse and representative DNNs,
datasets, DNN runtimes, and TEE usages, whereHyperTheft can
constantly recover DNN weights from ciphertext side channels.
We also systematically assess how public knowledge in various
scenarios can boost HyperTheft’s capability, and conduct mem-
bership inference and bit-flip attacks based on HyperTheft’s
recovered weights.

Artifact & Extended Version. The code, data, and an extended
version (which contains additional results and proofs) of this paper
are provided at https://github.com/Yuanyuan-Yuan/HyperTheft [1].

2 Preliminaries and Background

2.1 DNNs and Terminologies

Since many terms (e.g., parameter vs. weight) of DNNs are not
used consistently in existing literature, to avoid ambiguity, we first
briefly introduce DNNs and give concrete definitions for terms
related to this paper.

A DNN 𝐹 = . . . 𝑓𝑖+1 ◦ 𝑓𝑖 ◦ 𝑓𝑖−1 . . . consists of multiple connected
layers and each layer is a function 𝑓 (𝑥) = 𝜎 (\𝑥 + 𝑏) where 𝜎

is the non-linear activation function. The computation graph is
often constant in modern DNNs and does not change in different
executions. Each DNN is designed to solve an intended task by
assigning the prediction 𝑦 to an input 𝑥 . Depending on whether 𝑦
is discrete or continuous, the task is categorized as classification or
regression, respectively. A DNN’s capability of solving its task is
formed during the training stage, which updates [\, 𝑏] using the
training data. The trained DNN can run with various runtimes,
depending on its deployed platform.
Definitions. We define the following terms for this paper.

• DNN Weight: \ and 𝑏 are often dubbed as weight and bias of 𝑓 . To
ease the presentation, we refer to both \ and 𝑏 as a single singular
term “weight” in the rest of this paper. In particular, the term “DNN
weight” in this paper denotes [\, 𝑏] of all layers in a DNN. Since [\, 𝑏]
constitute a matrix, we refer to elements of matrix [\, 𝑏] as “weight
elements”. We use the uppercase𝑊 to denote DNN weight, and
the lowercase 𝑤𝑖 to indicate weight of the 𝑖-th layer. Similarly, 𝐹
denotes a DNN and 𝑓𝑖 indicates its 𝑖-th layer.
• Functionality & Behaviors: A well-trained weight𝑊 can enable a
DNN’s intelligence, which is reflected in two aspects: 1) the overall
functionality of solving the DNN’s intended task (e.g., classifying
digits); and 2) the behavior of predicting 𝑦∗ for a specific input 𝑥∗.
• DNN Structure & Parameters: Following prior literature [22, 74],
structure denotes the computation graph of a DNN, which includes
1) the number of layers, 2) how each layer is implemented, and 3)
how different layers are connected. For instance, LeNet and ResNet
are two different structures. Parameters indicate the hyperparame-
ters in DNN structures, e.g., kernel sizes in convolutional layers.
• Task Domain: DNNs are designed to provide predictions from a
fixed set.3 For example, a DNN classifying cat vs. dog only outputs
cat or dog even given a horse image. Therefore, to have meaningful
predictions, DNNs also require valid inputs. The validity of inputs
is determined by the DNN’s task, for example, if a DNN classifies
cat vs. dog, its valid inputs must be cat or dog images. Here, cat &
dog images form the “task domain” of the DNN.4

• Input Type: To distinguish the subtle difference between public
and private information of DNN’s valid inputs, we further define
“input type” over the task domain. Consider two medical diagnosis
DNNs that accept chest X-ray images. Suppose the two DNN de-
velopers have training images of non-overlapping diseases, these
two DNNs will support diagnosing different diseases, leading to
different task domains. However, they share the same input type of
“chest X-ray” image. Note that the cat & dog images mentioned
above are from a different input type of “natural” image [4, 6]; see
more cases in Sec. 8. In practice, having data from the victim DNN’s
task domain may be impractical, as these data are often private (e.g.,
medical images of certain diseases). However, obtaining data shar-
ing the same input type with the victim DNN is often feasible (e.g.,
medical images of benign cases). Previous query-based [12, 32, 68]
and hardware attacks [61, 76] require data covering the victim
DNN’s full task domain, while this paper loosens the requirement
to only input type, delivering a more practical attack.
Hyper-Network. A hyper-network is a special DNN that gener-
ates weights for a target DNN [13, 26, 63]. The machine learning
community has designed various hyper-networks to study the sta-
tistics of DNN weights for a specific task [63, 80]. Nevertheless,
conventional hyper-networks require data from the same task do-
main of the target DNN, and only generate weights of identical
functionality, impeding their application in stealing DNN weights.
By carefully designing the training algorithm of hyper-networks
(see Sec. 6.2), this paper presents a task-wise generalizable hyper-
network, which can generate weights for the target DNN (i.e., the

3Text DNN’s outputs are concatenated using words from a fixed vocabulary.
4The task domain is also referred to as “problem domain” in existing literature [56].

https://github.com/Yuanyuan-Yuan/HyperTheft

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yuanyuan Yuan et al.

attacked TEE-shielded DNN) without using data from its task do-
main. By leveraging ciphertext side channels from the target DNN,
our generated weights can exhibit different unseen functionalities.

2.2 TEE Protection and Mitigated Attacks

Model Stealing. Besides preventing attackers from copying DNN
weights, TEE also mitigates query-based model stealing [12, 32, 58,
68] (a.k.a., knowledge distilling). To understand how the mitiga-
tion works, we first elaborate on motivations behind this attack.
Typically, attackers first query the victim DNN using their own
data and then train a student model to duplicate the victim DNN’s
prediction confidences (i.e., an input’s probabilities of belonging to
all possible predictions) on the queried data. Because DNN training
is data-intensive and costly, query-based attacks aim to obtain a
functionality-equivalent student model using fewer training data
(i.e., the queried data) guided by the victim DNN’s confidence scores.
TEE-shielded DNNs mitigate such attacks by only returning the pre-
diction without confidence scores [79]. Thus, despite that attackers
can still query a TEE-shielded DNN, they only label their queried
data and the attack’s cost becomes comparable to training a new
DNN from scratch [79]. Note that the query data must cover the
TEE-shielded DNN’s full task domain; if the query data are from a
subset of the task domain, the student model only learns the victim
DNN’s partial functionality w.r.t. this subset [12, 32, 68, 79].

The black-box view of TEE-shielded DNNs also mitigates the
following popular DNN attacks.
Data Privacy: Membership Inference. Membership inference
attack (MIA) [8, 66] aims to infer if an input is included in the
victim DNN’s training data — a successful MIA indicates a severe
training data leakage. Existing attacks primarily leverage DNN’s
prediction confidence, intermediate results, and/or gradients to
infer membership of a given input. Since TEE-shielded DNNs are
purely black-box5 and only return final predictions, no available
information can be leveraged to infer an input’s membership.
DNN Integrity: Intelligence Depletion. Unlike adversarial at-
tacks that only fool a DNN to mis-classify the crafted adversarial
examples, bit-flip attack (BFA) can globally deplete DNN intelli-
gence such that the victim DNN randomly guesses predictions for
almost all (non-adversarial) inputs [44, 62, 75]. To launch BFA, at-
tackers first require localizing weight elements that are critical to
the DNN’s intelligence and then leverage rowhammer attacks [37]
to flip bits of these weight elements. The localization process is
conducted by computing gradients over different weight elements,
which is prohibited by the black-box view of TEE-shielded DNNs.
As a result, attackers have to randomly flip bits in a DNN’s weight,
which is impractical due to the massive search space and the high
cost of rowhammer attacks [62, 75].

2.3 TEE and Ciphertext Side Channel

TEEs leverage memory encryption to create isolated execution en-
vironments for secure DNN computations, where other users and
software stacks (e.g., guest kernel, OVMF) cannot access the en-
cryptedmemory. The encryption engine encrypts/decryptsmemory

5Note that previous MIA works assume that “black-box” DNNs return prediction
confidence [49], which is different from the black-box in our context.

data on-the-fly and is implemented as a hardware module between
the CPU chip and DRAM.
Deterministic Encryption. Two factors must be considered by
TEE. First, efficient random memory access that requires indepen-
dently encrypted memory blocks. Second, encrypting large memory
where additional space and latency are needed for counters. Tomeet
these requirements, modern TEEs including AMD SEV [35], ARM
CCA [3], Intel TDX [31], and Intel SGX on Ice Lake SP [31, 33],
adopt the deterministic-mode AES encryption. Specifically, given a
memory block, to encrypt its memory value 𝑣 , the encryption first
takes a tweak function 𝑇 to calculate a mask𝑚 = 𝑇 (𝑎), where 𝑎 is
the address of the block. The encrypted ciphertext is generated as
𝑐 = 𝑃 (𝑣 ⊕𝑚) ⊕𝑚, where 𝑃 is the encryption function. Therefore,
when the same value 𝑣 is stored at the same address 𝑎, the generated
ciphertext is always identical (i.e., ciphertext collision).
LeakageDue toCiphertextCollision. Existingworks have lever-
aged ciphertext collision to infer the plaintext private keys of TEE-
shielded cryptographic software [42, 43]. The attack workflow is
illustrated in Fig. 1: vfa the attacker observes ciphertexts generated
from two consecutive memory writes at the same address. If cipher-
texts do not change, the two written values should be identical. In
contrast, if ciphertexts change, different values are written. vfb Based
on the cryptographic software’s implementation, the attacker manu-
ally investigates which instruction induces the ciphertext collisions
and consequently infers the plaintext private keys.

Essentially, a similar procedure can be applied to TEE-shielded
DNNs. When a TEE-shielded DNN is executing, the attacker ob-
serves ciphertext collisions of its memory writes. Nevertheless, as
the victim DNN’s computation graph is often private, the attacker
cannot map ciphertext collisions back to their corresponding DNN
computations — only a ciphertext side-channel trace that records
ciphertext collisions from all the victim DNN’s memory writes is
available. Our community still lacks techniques to extract DNN
weights from ciphertext side-channel traces.

mov [addr], r0
mov [addr], r1
mov [addr], r2
mov [addr], r3

TEE

c0
c1
c2
c3

Ciphertext

Y
N
Y

Collision

Exploitation Phasea

BIGNUM t = {0};
while(i < 1024)

t[0]= key[i++];

b Analysis Phase

Source code0
1
1
Simple form
Small space

Figure 1: The workflow of ciphertext side-channel attacks.

3 Application Scope and Positioning

As shown in Fig. 1, a ciphertext side-channel attack consists of
two main phases: vfa an exploitation phase that collects side chan-
nels from the victim, and vfb an analysis phase that recovers secrets
from the collected side channels. In previous attacks towards cryp-
tographic software, the analysis phase is conducted by manually
analyzing how different execution states of the victim affect cipher-
text collisions [42, 43]. This is feasible given the public source code.
Cryptographic keys also have a simple form and a small search
space; each key only has 1∼2K independent binary bits and these
bits directly determine the ciphertext collisions.

HyperTheft: Thieving Model Weights from TEE-Shielded Neural Networks via Ciphertext Side Channels CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

However, manually analyzing how DNN weights affect cipher-
text collisions is hardly doable. In practice, the implementation
of the victim DNN is often private [79], such that attackers can-
not investigate how ciphertext collisions are induced by different
computation operators. On the other hand, ciphertext collisions
in TEE-shielded DNNs are not due to writing weight elements to
memory since weights have been preloaded before the execution.
Instead, the collisions are induced by a small portion of interme-
diate computation results of the DNN. As a result, ciphertext side
channels only leak partial and indirect information of DNN weights,
whereas cryptographic keys are fully leaked in prior works.

Moreover, modern DNNs have millions of weight elements, and
each weight element is a floating-point number with an uncon-
strained range under the specified precision, leading to an almost
infinite search space. Importantly, DNN weight elements are highly
correlated — a few incorrectly recovered weight elements (since
not all of them are leaked) can result in a non-functional DNN,
e.g., 1∼5 incorrect ones out of ∼10M weight elements as shown in
previous works [44, 62, 75], denoting a failed attack. This high in-
tegrity requirement of DNNweights is fundamentally different from
cryptographic keys where each bit is independent: even partially
recovered bits can be sufficient for practical attacks [54, 71].

Prior works have proposed side-channel analysis techniques for
various DNN secrets, e.g., DNN structure [22], DNN input [78],
etc. Nevertheless, since DNN weights are free of mainstream side
channels, the corresponding analysis approach is rarely studied.
Therefore, this paper proposes a DNN weight analysis technique
to complete the puzzle of DNN secret research, and bridges it with
ciphertext side channels to study the threats of TEE-shielded DNNs.
Aligned to previous analysis works [22, 78], we do not present
a new exploitation tool (vfa) because existing tools are relatively
mature. Rather, we focus on the analysis phase (vfb) and design
HyperTheft to automatically generate DNN weights from already-
prepared ciphertext side channels. We aim to greatly ease the at-
tack requirements and enhance the attack performance. Hyper-
Theft is designed to support any exploitation tools if available
(e.g., CipherLeak [43], SEV-Step [72]).

4 Threat Model and Related Works

This section elaborates on the threat model and required knowl-
edge of our work, and compares our technique with prior methods.
We omit existing works that hypothesize secret-dependent com-
putations of DNNs (e.g., a DNN prunes its weight for different
inputs [30]), assume most DNN weight elements are public [7, 73],
or perform brute-force guesswork [5, 19].
TEE-Protection.We assume TEE and its provided protection are
functioning properly and faithfully. Specifically, the encryption
algorithm of TEE is secure and attackers cannot decrypt ciphertext.
Only ciphertext side channels due to deterministic encryption (i.e.,
a design feature of TEE) are exploitable. Also, all software and
hardware involved in TEE are secure; attackers cannot alter their
data or control flows to leak secrets. The DNNs deployed inside TEE
are conventional DNNs: they are designed and trained normally
without any carefully crafted structure or adversarial injections to
enable or amplify leakage. The TEE-shielded DNN is fully black-box:
attackers cannot view its inputs, (intermediate) outputs, structure,

and weight. When querying the TEE-shielded DNN, only the final
prediction (without confidence scores) is returned to users.
Attacker. Consistent with the objective of shielding DNNs with
TEEs, we assume an untrusted host machine (e.g., a malicious hy-
pervisor, or the host OS) which has full system privileges. Thus, at-
tackers can read the content (i.e., encrypted ciphertext) and address
of a memory write via direct software access (as demonstrated on
AMD SEV [42, 43]). Besides, attackers are also capable of conduct-
ing physical attacks on TEE-shielded DNNs. For instance, attackers
can leverage memory bus snooping to read the ciphertext, as ex-
ploited on Intel SGX [40]. Having that said, we do not assume a
specific ciphertext side-channel exploitation approach; we aim to
provide an out-of-the-box solution to automatically generate DNN
weights from already-prepared ciphertext side channels.
Attacker’s Goals and Incentives. Leaking DNN weights brings
the following two threats.
1. Stealing Intellectual Property (IP). The key IP of a DNN is the in-
telligence encoded in its weight, which produces considerable com-
mercial values. Training DNN weights requires substantial manual
efforts to build training data (which are often private) and human
expertise to design the training algorithm.
2. Launching White-Box Attacks.As introduced in Sec. 2.2, thewhite-
box access to DNN weights enables severe attack chances, compro-
mising data privacy [8, 66] and breaking DNN integrity [44, 62, 75].

This paper recovers DNN weights from ciphertext side channels
by generating functionality-equivalent weights. Despite being dif-
ferent from the victim DNN’s weights, our recovered weights fulfill
the two attack goals (as evaluated in Sec. 8).
Target DNNs. Unlike existing attacks leveraging characteristics
of certain specific DNNs [76] (e.g., binarized DNNs whose weight
elements are either 1 or -1), ciphertext side-channel attacks exploit
the defects in TEE’s design. Therefore, our technique applies to any
general DNNs as long as they are “protected” by TEEs.

4.1 Attacker’s Knowledge and Actions

Our technique is established for highly practical attack scenarios
and assumes attackers having the weakest knowledge of the victim
DNN, i.e., only minimal information that specifies the DNN’s basic
usage — without them, attackers do not even know how to use
the stolen DNN and the stealing accordingly becomes meaningless.
Specifically, we consider that attackers only know the input type (as
defined in Sec. 2.1) and the task type (i.e., classification or regression,
which decides whether DNN predictions are discrete or continuous).
We clarify that input type and task type are public in TEE-shielded
DNNs and are also required by all existing attacks.

On the other hand, our technique does not only apply to this
weakest-knowledge setting; it also supports incorporating stronger
knowledge if available. Table 1 lists the attacker’s knowledge re-
quired by existing works. Below, we discuss their (in-)availability
under various considerations and how our technique can be further
enhanced with them.
DNN Knowledge. As in Table 1, all existing works require know-
ing the victim DNN’s task type. Here, the task type only distin-
guishes regression vs. classification and specifies the DNN’s output
format (i.e., continuous or discrete). It does not indicate the num-
ber of or which classes that a classifier can predict (since they are

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yuanyuan Yuan et al.

Table 1: Knowledge required by existing attacks andHyperTheft.! denotes public knowledge. Task Type and Input Type are

public and required by all existing works.+++ and−−− indicate “required” and “not required” for private knowledge. Confidence

of TEE-shielded DNNs is not available in all cases.

Observation Target DNN

DNN Knowledge Data Knowledge

Query

Task Type Confidence Structure Input Type Task Domain

(Algorithmic)

Query-Based Attack

[58, 68, 77] Prediction Confidence General DNN ! +++ −−− ! +++ +++[12, 32, 57], etc.

(Hardware)

Side-Channel Attack

DeepEM [76] Electromagnetic Binarized DNN ! +++ +++ ! +++ +++
DeepSteal [61] Rowhammer [37] Quantized DNN ! −−− +++ ! +++ +++
HyperTheft Ciphertext Collision [43] General DNN ! −−− −−− ! −−− −−−

private). Existing query-based attacks require having the victim
DNN’s confidence scores, which are always unavailable in TEE-
shielded DNNs [79]. Previous hardware attacks (those speed up
query-based attacks [61, 76]) rely on the victim DNN’s structure.
However, HyperTheft works without the structure information
given our functionality-centric view and the carefully developed
hyper-network; see Sec. 6 and Sec. 8.

While DNN structure is protected by TEEs, considering that DNN
structure can be leaked via cache side-channel attacks [27, 48, 74]
and TEEs are exploitable through cache side channels as well [24,
53, 55, 69], it is reasonable to also evaluate a stronger attacker with
the structure knowledge. Hence, to comprehensively assess the
threat, Sec. 8.3 further study how the structure information may
enlarge the weight leakage.
Data Knowledge. All previous works assume knowing the victim
DNN’s input type and having data from the victim DNN’s task
domain (see definitions in Sec. 2.1), because they must train the
student model to make it functional. However, this assumption does
not always hold. For example, when attacking medical DNNs, data
containing certain diseases may not be publicly available. Hyper-
Theft directly generates functional DNN weights (from ciphertext
side channels) without training them. Importantly, HyperTheft is
task-wise generalizable: it can generate weights of unseen function-
alities without data from the corresponding task domain.

In case data from the victim DNN’s task domain are available,
HyperTheft’s generated weights can be leveraged to initialize the
student model for query-based attacks, significantly reducing the
query cost when attacking TEE-shielded DNNs (see Sec. 8.3).
Attacker’s Action. As marked in Table 1, all prior attacks assume
an active attacker who can frequently query with the victim DNN.
In practice, such action is often limited by the query budget (i.e.,
the number of queries). For instance, querying commercial DNNs
incurs economic cost and DNN service providers may limit the
number of queries. Our technique, in contrast, enables a passive
attack: the attacker does not need to query the victim DNN, but only
passively records ciphertext side channels when the victim DNN
is executing. HyperTheft is also highly stealthy: it only requires
ciphertext side channel traces logged from the victim DNN’s a few
executions (with each one for a binary classification), and the cost
of developing HyperTheft is comparable to training a student
model as in prior attacks (as elaborated in Sec. 6).

5 Explorations and Insights

In this section, we explore key properties of DNN weight and func-
tionality that inspire our technique. We start by visualizing DNN
weights w.r.t its performance. Since DNN’s expressiveness is sup-
ported by its non-linearity, we use the XOR problem, a non-linear

task, as a representative example. The XOR task is defined as a
binary classification: given an input 𝑥 ∈ R2, the ground truth label
is decided as 𝑦 = (𝑥 [0] > 0) ⊕ (𝑥 [1] > 0). We set a two-layer DNN
structure and train 40K different DNNs with this structure to solve
the XOR task. These DNNs have varied test accuracy ranging from
∼50% (i.e., random guess) to >99.9% (i.e., nearly perfect prediction).
This way, we obtain 40K different DNN weights having different
performances for the same XOR task.

Figure 2: Visualization of different DNN weights w.r.t. their

accuracy. Each dot denotes one DNN weight, and its coor-

dinates (which are normalized into [−1, 1]) represent the

values of weight elements. Weights of > 80% accuracy are

marked in red. For blue dots (i.e., weights having ≤ 80% ac-

curacy), a more transparent color indicates lower accuracy.

We then project these weights onto a two-dimensional space via
PCA [59] to ease the visualization. As shown in Fig. 2, each dot
denotes one DNN weight and its coordinates indicate the values
of weight elements. Red dots mark DNN weights having > 80%
test accuracy, which can be deemed as functional DNN weights
since they enable DNN intelligence. The remaining weights are
blue-colored where higher transparency indicates lower accuracy.
Fig. 2 reveals that, functional DNN weights (i.e., red dots) sparsely
and discontinuously distribute in the whole space. Therefore, we
have the following two conclusions.

First, slightly perturbing a few weight elements (i.e., chang-
ing a dot’s coordinates in Fig. 2) can turn a functional weight
(red dot) into a non-functional one (blue dot). Second, DNN
weights of distinct elements (i.e., two far-flung red dots) can
have equivalent functionality (i.e., solving the XOR task).

Motivation. The first conclusion is aligned to results in prior DNN
attacks, which demonstrate that changing a few (out of millions)
weight elements can totally deplete DNN intelligence [62, 75]. It
also renders the impracticality of per-element recovery of DNN
weights: as long as the exact value of a weight element is not re-
covered under this scheme (e.g., some elements are not leaked),

HyperTheft: Thieving Model Weights from TEE-Shielded Neural Networks via Ciphertext Side Channels CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

the inferred DNN weight is likely non-functional. The second con-
clusion can be drawn from DNN training, whose different runs
generate distinct but equivalent weights. It is also aligned to ex-
isting DNN pruning works, where a DNN’s functionality remains
same after replacing more than 90% of its weight elements with
zeros [81]. This conclusion sheds light on the feasibility of recover-
ing different but functionality-equivalent DNN weights from partial
observations of the victim DNN’s weight.

(a) Decision boundary of digit “0” (b) Decision boundaries of three classes

W1 = [1.33, 0.75, 1]
W2 = [0, 0.75, 1]

W0 = [-1.14, 0.75, 1]

d

Figure 3: Decision boundaries for three classes.

DNN Functionality. A DNN’s intended task uniquely decides its
functionality. Fig. 3 shows an example where a DNN, whose last
layer is 𝑦 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (\𝑥 + 𝑏)6, classifies three clusters of digits “0”,
“1”, and “2”. To ease the visualization, we only display the last layer
of the DNN. We clarify that our attack is applied to the full DNN.

This task requires the DNN to split the input space (which con-
sists of all valid digits “0”, “1”, and “2”) to separate different digits.
The DNN accordingly forms the required functionality by training
\ and 𝑏. Each row in the concatenated matrix𝑊 = [\, 𝑏] indicates
a line drawn by the DNN. Given the trained weight:

\ =

\0
\1
\2

 =

−1.14 0.75
1.33 0.75
0 0.75

 , 𝑏 =

𝑏0
𝑏1
𝑏2

 =

1
1
1

 , (1)

the first row [\0, 𝑏0] = [−1.14, 0.75, 1] is marked as the red line,
\0 · 𝑥 + 𝑏0 = 0, in Fig. 3(b). After drawing all three lines as in
Fig. 3(b), the DNN’s is capable of classifying digits. Overall, DNN
structure (i.e., the dimension of𝑊) reflects how many lines are
drawn, and DNN weight decides where and how to draw these lines.

Intuitively, each row of [\, 𝑏] also characterizes a binary classifi-
cation. In Fig. 3(a), the red line separates “0” from other digits (i.e.,
classifying if a digit is “0”). Similarly, the blue and green lines in
Fig. 3(b) (derived from the second and third rows of [\, 𝑏]) classifies
if a digit belongs to “1” or “2”, respectively. As in Eq. 1, despite
that the three rows of [\, 𝑏] only differ in the first element, they
represent distinct functionalities for different binary classifications;
this is consistent with our first conclusion delivered from Fig. 2.
Intermediate Outputs Reflect Functionality. Given an input 𝑥 ,
each layer’s output (a.k.a. the intermediate output) describes 𝑥 ’s
relative position w.r.t. the lines drawn by this layer. Considering
Fig. 3(a) where an input is marked as the black dot, suppose the first
element of its intermediate output (from the layer we discussed
above) is −𝑑 (𝑑 > 0), we know that 𝑥 is below (since −𝑑 < 0) the red
line \0 ·𝑥 +𝑏0 = 0 and the distance is 𝑑

|\0 | (see proof in the extended
version [1]). With this information, we can infer that the first row of

6The Sigmoid activation function is commonly used to output class probabilities.

[\, 𝑏] corresponds to a line that locates in the region covered by the
purple lines in Fig. 3(a). While in large DNNs, the above case may
become more complicated due to layer propagations and the high
non-linearity, we can safely conclude that a DNN’s intermediate
outputs reflect its functionality. Furthermore, given that ciphertext
collisions are due to intermediate computations of TEE-shielded
DNNs, it is therefore reasonable to believe that DNN functionality
can be reflected from ciphertext side channels.
Generating Functionality-Equivalent Weights. Taking all the
insights above, we see the infeasibility of recovering exact weight
elements in the context of ciphertext side-channel attack. However,
since ciphertext side channel can reflect DNN functionality, we
aim to directly generate functionality-equivalent weights from the
victim DNN’s ciphertext side channels. To achieve this, the key
obstacles are how to properly represent and extract DNN function-
ality from ciphertext side channels, and how to limit the required
victim’s knowledge to only public information. Below, we introduce
our solution in Sec. 6.

6 Solution and Technical Details

6.1 Overview and Goals

Fig. 4 illustrates the workflow of HyperTheft. Similar to existing
automated analysis approaches [22, 78], our technical pipeline also
consists of an offline and an online stage. As illustrated in Fig. 4(a),
when attacking an unknown TEE-shielded DNN 𝐹 of unknown
weight𝑊 in the online stage, we collect one ciphertext side channel
trace 𝑠 from 𝐹 ’s execution.We then feed 𝑠 toHyperTheft to directly
generate weight �̂� for a surrogate model ℱ̂ (whose structure can
be different from 𝐹), so that ℱ̂ is functioning consistently with 𝐹 .

The offline stage exclusively develops HyperTheft using at-
tacker’s own data and DNNs without interacting with the victim
DNN; it primarily trains a hyper-network for the weight generation.
Overall, the offline stage aims to achieve the following goals:wg1 Handling the partially leaked weight information;wg2 Forming task-wise generalizable weight generation;wg3 Capturing functionalities and their equivalence;wg4 Generating functional weights from a single trace;wg5 Supporting both regression and classification tasks;wg6 Modeling correlations between weight elements;wg7 Maximizing performance with limited observations.
In the following, we first introduce how to build HyperTheft
and the training data/pipeline/objective w.r.t. to the seven goals in
Sec. 6.2. Then, we introduce our in-depth optimizations in Sec. 6.3.

6.2 Building and Training HyperTheft

Encoder andDecoder (
wg
1).As illustrated in Fig. 4(a),HyperTheft

consists of two components: an encoder 𝐸 that converts ciphertext
side channel 𝑠 into a latent variable 𝑧, and a decoder𝐷 that generates
DNN weights �̂� according to 𝑧. Here, we let 𝑧 have a much lower
dimension than both 𝑠 and �̂� due to the following reasons: 1)
considering the frequent memory accesses in DNNs which result in
lengthy 𝑠 (i.e., containing millions of ciphertext collision records),
a lower-dimensional 𝑧 can force 𝐸 to neglect irrelevant records in 𝑠
and to focus on functionality-related information (guided by proper
training objectives, as will be introduced later). Besides, 2) the

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yuanyuan Yuan et al.

C(2, m)
sub-datasets

sub-test

sub-
training

inner loop

E

Dℱ" 𝒲$

ℱ" W *

z*

s*

yes

functionality-
equivalent

E z D

s

HYPERTHEFT: D ∘ E

D1 𝑤&1

𝜖
noise

+

(a) Overview (b) Training data preparation (c) Training iteration (d) Weight generation

vs.

vs.

vs.

Only train
D, E

backward

HYPERTHEFT’s forward

𝑓*1ℱ" ’s forward

D2

D3

𝑤&2 𝑓*2

𝑤&3 𝑓*3

𝜙* z*

no

xouter
loop

Φ

TEE

ℱ" 𝒲$
WF

one
trace

Loss

P1 P2m classes

Figure 4: Workflow of HyperTheft. In Fig. 4(a), 𝐹 and its input, output, and weight𝑊 are protected by TEEs. HyperTheft

only takes 𝐹 ’s one ciphertext side channel trace 𝑠 as input and generates a different but functionality-equivalent weight �̂�
for a surrogate model ℱ̂ . ℱ̂ has a different structure from 𝐹 . Fig. 4(b) illustrates how our training “data” are constructed as

different binary classification (or regression) tasks. In Fig. 4(c), we illustrate how each training iteration is performed. Fig. 4(d)

shows how we implement stochastic generation via random noise 𝜖 and separately generate weight �̂�𝑖 for layer 𝑓𝑖 .

dimension expansion process in 𝐷 (i.e., from 𝑧 to �̂�) encourages 𝐷
to infer the unleaked information (as ciphertext side channels only
leak partial weight information), instead of merely transmitting
information in 𝑠 . For efficiency, we implement 𝐸 and𝐷 as multilayer
perceptrons (MLPs); empowered by our training algorithms, such
simple forms of 𝐸 and 𝐷 work sufficiently well in practice.
Training “Data”Construction (

wg
2 ,

wg
5).Unlike conventional DNN

training data that is formed as a set of input-output pairs, Hyper-
Theft’s “training data” is a set Φ of different binary classification
or regression tasks. This setup helps the weight generation gen-
eralize from known (training) tasks to unknown (test) tasks. We
first collect some data that have the same input type (e.g., merely
natural images) with the victim DNN. Note that their task domain
does not overlap with the victim DNN’s task domain. As in Fig. 4(b),
if the victim DNN performs a classification task and suppose the
attacker’s data have total 𝑚 classes, we form 𝐶 (2,𝑚) 7 (i.e., the
number of 2-combinations for a set of 𝑚 elements) sub-datasets
with each for a binary classification task. For victim DNNs perform-
ing regression tasks, attackers can randomly divide their data into
sub-datasets for different regression tasks.

All sub-datasets also have their training and test sets. We denote
them as sub-training and sub-test sets. To prepare “victim” DNNs
for the offline training, we also train a DNN ℱ̂𝑊 ∗ (whose weight is
𝑊 ∗ and the structure is the same as our surrogate model) for each
task 𝜙∗ ∈ Φ using its corresponding sub-training set. We ensure
each ℱ̂𝑊 ∗ is well-trained to a satisfactory accuracy or loss.
Per-Task Granularity and Single-Trace Input (

wg
2 ,

wg
4 ,

wg
7). As

shown in Fig. 4(b)-(c), in each training iteration, we randomly pick a
task𝜙∗ and its corresponding trained DNN ℱ̂𝑊 ∗ . We then randomly
select one input data 𝑥 from 𝜙∗’s sub-test set and feed it to ℱ̂𝑊 ∗ .
It’s worth noting that using 𝑥 from the sub-test set does not misuse
the dataset because our “data” are split as training and test tasks;
these sub-test sets belong to training tasks. When ℱ̂𝑊 ∗ is executing
with 𝑥 , we collect a ciphertext side channel 𝑠∗ as one training
input of HyperTheft. Then, HyperTheft takes 𝑠∗ and outputs
�̂� . HyperTheft is optimized to generate �̂� that is functionality-
equivalent to𝑊 ∗ (i.e., ℱ̂𝑊 ∗ ’s weight).

7In practice, using all𝐶 (2,𝑚) sub-datasets is usually unnecessary. Our results in Sec. 8
show that 25-30 sub-datasets are sufficient.

Note that each input of HyperTheft is a ciphertext side-channel
trace logged from the victim DNN’s only one execution. Recall as
explored in Sec. 5, a DNN’s one execution can reflect rich informa-
tion of its functionality. The single-trace setup can make the online
attack stealthy and minimize the online attack’s cost. Sec. 6.3 will
introduce our optimizations for this single-trace setup.
Functionality-Centric Training Objective (

wg
1 ,

wg
2 ,

wg
3 ,

wg
6). Our

training objective aims to measure the equivalence between the gen-
erated weight �̂� and the target weight𝑊 ∗. As elaborated in Sec. 5,
element-wise distance metrics are inapplicable to DNN weights: a
weight having similar elements with𝑊 ∗ may exhibit a distinct func-
tionality and is even non-functional. Given that𝑊 ∗’s functionality
was formed when training𝑊 ∗ on 𝜙∗’s sub-training set, we can also
enable an equivalent functionality for �̂� using this sub-training set.
Nevertheless, we should not directly train �̂� on the sub-training
set, because the victim DNN’s training data (or data from the same
task domain) is unavailable during online attack.

Intuitively, since the generated weight �̂� = 𝐷 ◦𝐸 (𝑠∗) is decided
by 𝐸 and 𝐷8 which are MLPs, updating 𝐸 and 𝐷’s weights can also
change �̂� . Thus, to make �̂� functionality-equivalent to𝑊 ∗, we
can indirectly optimize �̂� by only training 𝐸 and 𝐷 with 𝜙∗’s sub-
training set. To this end, we design the following training objective:

argmin
𝐷,𝐸

𝐿(ℱ̂�̂� , 𝜙∗), where �̂� = 𝐷 ◦ 𝐸 (𝑠∗). (2)

𝐿 denotes the loss function associated with 𝜙∗. For example, 𝐿 is
cross-entropy loss for classification and mean squared error for
regression. 𝐿(ℱ̂�̂� , 𝜙∗) denotes the loss calculated over 𝜙∗’s sub-
training set when ℱ̂ has the weight �̂� (i.e., the output of 𝐷 ◦ 𝐸).

As illustrated in Fig. 4(c), similar to conventional DNN training,
this objective minimizes the loss 𝐿 by back-propagating through
ℱ̂�̂� → 𝐷 → 𝐸. However, it does not directly train ℱ̂�̂� , but
only trains 𝐸 and 𝐷 to optimize their output �̂� . As a result, �̂�
generated from the subsequent iterations (after training 𝐸 and 𝐷)
can reduce the loss 𝐿(ℱ̂�̂� , 𝜙∗). Finally, the generated �̂� will have
an equivalent functionality with𝑊 ∗ when it reduces 𝐿(ℱ̂�̂� , 𝜙∗)
to a satisfactory level.

This training scheme is fundamentally different from conven-
tional DNN training. Since the training optimizes HyperTheft’s
8We should not modify the logged ciphertext side channel 𝑠∗ .

HyperTheft: Thieving Model Weights from TEE-Shielded Neural Networks via Ciphertext Side Channels CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

generation ability across different tasks, it makes the weight gener-
ation task-wise generalizable: given 𝑠∗ logged from DNNs solving
different unseen tasks, 𝐷 ◦𝐸 (𝑠∗) generates weights that are capable
of solving the corresponding tasks. Importantly, we find that Hy-
perTheft can generate functional weights for DNNs that are much
larger than HyperTheft. That is, we do not need to build a huge
HyperTheft whose weight subsumes all functionality-equivalent
weights of the victim DNN. Essentially, the objective in Eq. 2, to-
gether with the dimension expansion of 𝐷 , enable HyperTheft
to infer unleaked information in 𝑠∗ through the functionality per-
spective. Moreover, representing functionality should require less
information than representing the weight itself; this is also sup-
ported by existing DNN weight pruning works [20, 51, 81].

6.3 Optimizations for HyperTheft

Orchestrating Training Iterations (
wg
2 ,

wg
4). When HyperTheft

is taking a ciphertext side channel trace 𝑠∗ in each training iteration,
it is impractical to trainHyperTheft using 𝜙∗’s whole sub-training
set, as it incurs a cost comparable to training total #training itera-
tions DNNs; without sufficient training iterations, the encoder 𝐸
may be unable to extract useful information from 𝑠∗.

Worse, our tentative experiments show that HyperTheft rarely
converges under the above setup, because it poses conflicts between
different training iterations. Suppose after one iteration, Hyper-
Theft is able to generate (nearly) functional weights for the task
𝜙∗. The subsequent iteration, however, requires HyperTheft to
generate functional weights for another different task. Since uni-
versal weights (that can solve all tasks) do not exist [65], fulfilling
the subsequent iteration’s requirement may break HyperTheft’s
generation ability formed in the current iteration.

To reduce the overhead and alleviate conflicts between differ-
ent iterations, we adopt a sampling strategy. Instead of using 𝜙∗’s
whole sub-training set, we randomly sample one data instance
from the sub-training set to optimize Eq. 2. Different from using the
whole sub-training set that independently and subsequently trains
HyperTheft for each task, this sampling strategy jointly trains
HyperTheft for all tasks over multiple iterations. It, to some extent,
explores the similarity between tasks and helps HyperTheft to
form the task-wise generalization. In addition, the sampling only
reduces the cost of each training iteration; we still have sufficient
iterations (that use different 𝑠∗ as 𝐸’s inputs) to train 𝐸.

Decoupling Functionality (
wg
4 ,

wg
5 ,

wg
7). As discussed in Sec. 4,

TEE-shielded DNNs only return the final prediction, and we do not
assume knowing how many (i.e., reflected from DNN structure) or
which (i.e., the task domain) classes the victim DNN can predict.
Our current attack pipeline is adequate for binary classification and
regression tasks. Below, we discuss how it can be applied to 𝑘-class
classification (𝑘 > 2).

As explored in Sec. 5, the full functionality of 𝑘-class classifica-
tion can be decoupled as 𝑘 (sub-)functionalities of binary classifica-
tion. Thus, attackers can steal the full functionality via 𝑘 surrogate
models. However, the binary classification decoupled from 𝑘-class
classification (i.e., whether an input is from a class or not) is slightly
different from our training binary classification (i.e., classifies two
different classes). To address this, we actively flip the two labels of
each sub-training set when training HyperTheft.

As illustrated in Fig. 4(b)-(c), the sub-dataset has two classes 𝑃1
and 𝑃2. If the ciphertext side channel 𝑠∗ is collected when ℱ̂𝑊 ∗

is taking an input 𝑥 from class 𝑃2, we set 𝑃2 in the sub-training
set as the label “yes” whereas 𝑃1 as the label “no”, and vice versa
if 𝑥 is from class 𝑃1. This way, every time a TEE-shielded DNN
executes with an input 𝑥 of class 𝑃𝑥 , HyperTheft can generate a
surrogate model which is able to predict whether an input belongs
to 𝑃𝑥 or not. By collecting ciphertext side channels from the victim
DNN’s (minimal) 𝑘 executions, HyperTheft can generate 𝑘 sur-
rogate models where the 𝑖-th surrogate model predicts an input’s
confidence of belonging to the 𝑖-th class, thereby stealing the full
functionality. Since HyperTheft’s weight generation generalizes
across tasks, we only need to train HyperTheft once.
Stochastic and Layer-Wise Generation (

wg
4 ,

wg
6 ,

wg
7). Inspired by

DNN’s stochastic training algorithms (e.g., SGD [2], Adam [38]), we
also implement a stochastic weight generation by adding a random
noise 𝜖 to 𝑧∗, as illustrated in Fig. 4(d). This way, HyperTheft
can more extensively utilize one logged side channel to generate
different but equivalent weights in different runs. The resulting
surrogate models (for the same binary classification or regression
task) can form a majority voting (i.e., using the most frequent
prediction from these surrogate models as the final prediction) to
improve the accuracy [21].

In addition, following advice from [63, 80], HyperTheft uses
one encoder 𝐸, but 𝑛 independent decoders 𝐷1, . . . , 𝐷𝑛 to generate
weights �̂� = {�̂�1, . . . , �̂�𝑛} for layers 𝑓1, . . . , 𝑓𝑛 , respectively. As
shown in Fig. 4(d), each 𝐷𝑖 takes an identical input 𝑧∗ + 𝜖 (i.e., the 𝜖
is fixed after sampled). Beyond our functionality-centric objective
that implicitly captures correlations between weight elements, this
layer-wise generation can explicitly model the layer propagation in
DNNs, while considering the independent execution of each layer.

7 Implementation and Setup

We implement HyperTheft in PyTorch (ver. 2.0.0) with about 2.5K
LOC. Both the encoder 𝐸 and decoder 𝐷 in HyperTheft are imple-
mented as three-layer MLPs with ReLU as the activation function.
The latent variable 𝑧 is set to have 64 dimensions. When generating
a DNNweight having 𝑣 elements, the output of𝐷 is a 𝑣-dimensional
vector; this vector is then reshaped according to the structure of
the surrogate model. HyperTheft is trained using Adam optimizer
with a learning rate of 0.002 and the training takes 30 epochs. Each
epoch takes 15 minutes on one Nvidia GeForce RTX 2080 GPU. Note
that training HyperTheft is a one-time effort given its task-wise
generalizable weight generation.
Side Channel Preparation. Since a TEE-shielded DNN isolatedly
operates in its memory, and given the high privilege of attackers
(e.g., hypervisor, OS), ciphertext side channel distinguishes other
conventional side channels by its clean and noise-free nature [42,
43]. Also, unlike prior DNN attacks, HyperTheft does not need to
interact with or log ciphertext side channels from the victimDNN in
the offline stage. Hence, we can speed up the offline data preparation
by mimicking an exploitation tool using Intel Pin [50] on attacker’s
own DNNs. During the online stage, we use these exploitation tools
to collect ciphertext side channels from (unknown) TEE-shielded
DNNs and steal their weights. To date, two mature exploitation
tools, CipherLeak [43] and SEV-Step [42, 72] have been proposed.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yuanyuan Yuan et al.

CipherLeak is coarse-grained but is more scalable by operating in
a page granularity, while SEV-Step can precisely track memory
write in an instruction granularity but is costly.

We configure CipherLeak following the default setup. However,
when setting up SEV-Step, we note that its current implementation
is based on Linux kernel Ver. 5.14, which is too old to be compatible
with the latest SEV-SNP firmware (Ver. 1.55) required to launch a
guest VM for DNNs. We have contacted the developers for support,
and the upgrading is still in process by the time of submission
given the considerable manual efforts required. Hence, we simu-
late SEV-Step using Intel Pin. Our preliminary explorations show
that ciphertext side channels collected using our Pin-based simu-
lation and SEV-Step are identical (on those programs supported
by both). As suggested by the developers, a potential (and might
be the only) factor that could differ our Pin-based simulation from
SEV-Step is due to the multiple memory writes occurred during
a given APIC timer interval, where some memory writes can be
periodically missed by SEV-Step [72]. Thus, for completeness, we
also benchmark HyperTheft towards this impact; results are pro-
vided in the extended version [1]. Overall, HyperTheft constantly
achieves promising performance even when considerable (e.g., 63/64)
memory writes are missed.

Considering the stealthy and efficiency, we employ CipherLeak
to exploit large Transformer-Based DNNs (e.g., ViT [18]). Note
that it is often impractical to put these extremely large DNNs into
TEEs. Existing works divide large DNNs into slices and only shield
sensitive slices via TEEs [28, 52, 79], leaving other slices as public.
Therefore, we adopt HyperTheft to recover weights of the TEE-
shielded DNN slices. For moderate-size DNNs (e.g., ResNet, LSTM)
that can be fully shielded by TEEs, we use SEV-Step (simulated
via Pin due to the compatibility issue) to collect ciphertext side
channels and recover the full DNN weights.
Side Channel Representation. We first record ciphertext colli-
sions for different addresses in the victim DNN’s (isolated) memory
region. If two consecutive writes to the same address have the same
content, we record a bit 1 for this address; otherwise, we record a bit
0. This way, we collect a binary collision sequence for each address.
Given that DNN intermediate outputs are floating-point numbers,
most addresses do not have collisions and can be neglected to re-
duce the number of target addresses. Then, we rank the remaining
collision sequences based on the order of their first writes, and con-
catenate them as one single sequence. This concatenated sequence
denotes one ciphertext side-channel trace.

8 Evaluation

In this section, we first introduce the evaluation setup in Sec. 8.1.We
then evaluateHyperTheft under the weakest knowledge in Sec. 8.2,
where victim DNNs are running with the latest version of PyTorch
(ver. 2.1.0). Sec. 8.3 evaluates the attack surface by considering
DNN executables and different versions of PyTorch, and studies
how stronger knowledge (under certain possible scenarios) can
enhance the weakest-knowledge attacks. Sec. 8.4 further shows
that attacks mitigated by TEEs can be largely enhanced by our
recovered weights.

In the extended version [1], we present DNNmodules that induce
the leakage. Overall, the leakages are due to basic computation
operators shared by different DNNs.

8.1 Evaluation Setup

Table 2: Evaluated datasets and victim DNNs. ImageNet is

evaluated under a cross-dataset setting. For ViT, we recover

the weights of the multi-head self-attention layers.

Dataset Input Type Task Type Remarks DNNs MSE/Acc.

Stock [34] Stock price Reg. Sequence LSTM 1.46∼1.95
Chest

X-ray [70]
Medical
image Classif. 2-class LeNet 90∼95%

ResNet 90∼95%

MNIST [16] Digit Classif. 2-class
LeNet 94∼98%
ResNet 94∼98%
ViT 94∼98%

CIFAR10 [39] Natural
image Classif. 2-class

LeNet 90∼95%
ResNet 90∼95%
ViT 90∼95%

ImageNet [15] Natural
image Classif. Multi-class & 7 DNNs* 90∼95%Cross-dataset

* LeNet, ResNet, VGG, SqueezeNet, MobileNet, DenseNet, and ViT.

DNNs and TEE Usage. Our evaluation considers representative
DNNs and different usages of TEEs. For classical moderate-size
DNNs (DNNs in Table 2 except for ViT), we put the full DNNs
into TEE and generate their full weights using HyperTheft. How-
ever, given the large size of Vision Transformer (ViT) [18], it is
impractical to shield the full DNN via TEEs. Following recent
works [28, 52, 79], we consider shielding only sensitive slices of
ViT and using HyperTheft to recover weights of the shielded
DNN slices. Since ViT’s effectiveness is due to the self-attention,
we shield ViT’s multi-head self-attention layers via TEEs and use
HyperTheft to generate the corresponding weights.
“Data” (i.e., Task)Construction.Table 2 lists our adopted datasets.
We refer interested readers the extended version [1] for their details.
Stock dataset is used to predict the stock price for different compa-
nies which is a regression task. We divide Stock dataset according
to the company to form different regression tasks. We use MNIST,
CIFAR10, and Chest X-ray to evaluate HyperTheft for binary clas-
sification w.r.t. different input types. For each dataset, we randomly
choose two classes to form a binary classification as our test “data”.
The remaining classes are used to construct 𝐶 (2, 8) = 28 binary
classifications as tasks in our training “data”, so that task domains
of HyperTheft’s training and test data/tasks do not overlap.

ImageNet is used to evaluate HyperTheft for multi-class classi-
fication. Since both CIFAR10 and ImageNet are natural images, we
consider a cross-dataset setting to eliminate potential bias within
the same dataset: we train HyperTheft using binary classifications
constructed via CIFAR10 but evaluate it with 𝑘-class classification
formed via ImageNet. We set 𝑘 ∈ {2, 10}. Overlapped classes be-
tween ImageNet and CIFAR10 are excluded.

For cross-validation, we consider five different combinations
of training and test “data” splits in each setting, resulting in (5 ×
#datasets × #DNNs) distinct test tasks with each one corresponds
to one unique victim DNN. For each test task, we generate 100
weights from the victim DNN’s 100 different executions.
Surrogate Model Structure. For image DNNs, we follow the com-
mon practice and design the surrogate model as convolutional
layers followed by fully-connected layers; the activation function is
ReLU. We implement two surrogate models of different depths. The
first one, dubbed as Conv, has 3 convolution + 2 fully-connected
layers. The second one, dubbed as Convdeep, has 5 convolutional +
3 fully-connected layers. For our regression task, since inputs are

HyperTheft: Thieving Model Weights from TEE-Shielded Neural Networks via Ciphertext Side Channels CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

sequential data, our surrogate model is a basic recurrent neural
network (RNN) following the common practice. We clarify that our
surrogate model is much simpler than the victim DNNs.

Note that ViT (and all transformer-based DNNs) is implemented
using only fully-connected (FC) layers. Also, in the slice-based
protection, the structure of each TEE-shielded slice can be easily
inferred from public DNN slices. Therefore, our surrogate model
has the same structure as the ViT’s self-attention layer. However,
given the dense computations of FCs, training ViT requires careful
regulations like dropout to avoid over-fitting [18], which can be
private in practice. Thus, for the weakest-knowledge setting in
Sec. 8.2, we assume attackers do not know the regulation. Sec. 8.3
then evaluates impacts of the regulation information.
Evaluation Criteria. Following existing works [32, 79], we use
two criteria, fidelity and functionality, to evaluate DNN weights
recovered by HyperTheft. Fidelity (Fid) calculates the percentage
of test inputs (from the sub-test set of each test task) where the
surrogate model and the victim DNN have identical predictions (in-
cluding incorrect prediction). For classification, Fid can be directly
calculated via predicted labels, whereas for regression, because
the prediction is continuous numbers, we deem two predictions
as identical if their difference is less than 2 (the stock prices vary
with a range around 100). Functionality (Fun) denotes the task’s
own evaluation metric. Fun is the MSE or accuracy of all test inputs
for regression or classification tasks, respectively. Higher accuracy
indicates better results whereas lower MSE is better.

8.2 The Weakest-Knowledge Attack

In this section, we generate 100 × 5 different weights for each
victim DNN, leading to more than 8Kweights and evaluation results
(for 17 different victim DNNs). To better reflect the average and
fluctuations, we report the ranges of these results in Table 3.

Table 3: Results of the weakest-knowledge attack.

1 Dataset DNN Surrogate #Classes #Votes Fid Fun
2 Stock LSTM RNN N/A 1 90∼93% 1.49∼1.97
3 Chest LeNet Conv 2 1 87∼91% 83∼88%
4 X-ray ResNet Conv 2 1 88∼90% 86∼89%
5

MNIST
LeNet Conv 2 1 87∼91% 87∼89%

6 ResNet Conv 2 1 86∼92% 84∼91%
7 ViT ViT 2 1 91∼98% 91∼97%
8

CIFAR10
LeNet Conv 2 1 79∼86% 77∼83%

9 ResNet Conv 2 1 78∼86% 78∼82%
10 ViT ViT 2 1 80∼87% 79∼88%
11

ImageNet

LeNet Conv 2 1 78∼87% 79∼85%
12 ResNet Conv 2 1 78∼88% 77∼86%
13 ViT ViT 2 1 80∼87% 78∼87%
14 ResNet Conv 10 1 70∼75% 68∼73%
15 ResNet Convdeep 10 1 79∼84% 76∼83%
16 ViT ViT 10 1 77∼86% 78∼85%
17 ResNet Conv 10 5 85∼88% 85∼87%
18 ResNet Conv 10 11 89∼92% 88∼89%
19 ResNet Conv 10 21 93∼95% 91∼94%
20 VGG Conv 10 11 91∼94% 90∼92%
21 SqueezeNet Conv 10 11 90∼92% 89∼92%
22 MobileNet Conv 10 11 90∼93% 88∼90%
23 DenseNet Conv 10 11 92∼93% 90∼93%
24 ViT ViT 10 11 91∼94% 90∼94%

Regression & Binary Classification. As shown in Table 3, Hy-
perTheft can successfully recover DNN weights for both regres-
sion and binary classification using a single side-channel trace
logged during the victim DNN’s one execution. The recovered

weights are functional (Fun) and also consistent (Fid) with the vic-
tim DNN’s weights. We note that Fid is higher than Fun on average,
because Fid also counts incorrect predictions. It also reflects that
HyperTheft infers specific behaviors of the victim DNN beyond
its overall functionality, despite that HyperTheft never queries
the victim DNN. Recall that ciphertext collisions are generated due
to the victim DNN’s intermediate outputs. As explored in Sec. 5,
these intermediate outputs specify both a DNN’s functionality (i.e.,
how the input space is split) and its specific behaviors (i.e., where
and how the splitting lines are drawn), rendering the superiority of
HyperTheft’s weight generation scheme.
Multi-Class Classification. As shown in the 14-24 rows in Ta-
ble 3, HyperTheft is capable of (passively) generating weights for
classification of more classes. Although classifying multiple classes
is more challenging, HyperTheft alleviates this hurdle by clev-
erly decoupling the 𝑘-class classification as 𝑘 binary classifications.
Nevertheless, we note that Conv (the 14th row) exhibits a relatively
lower capability of classifying 10 classes due to its insufficient depth.
Nevertheless, when using Convdeep (the 15th row) as the surrogate
model’s structure, the Fun and Fid are largely improved.
Majority Voting. Table 3’s 17-24 rows show that majority voting
among multiple surrogate models (for the same task) can further
improve Fid and Fun. As observed, while a single surrogate model
based on Conv performs worse when classifying 10 classes, the
results can be improved as being comparable to Convdeep with
multiple Conv-based surrogate models. Note that we introduce
stochasticity into the weight generation for majority voting, these
different DNN weights are therefore generated using a single side
channel trace from the victim DNN’s one execution.
Surrogate Model. The above results show that the depth (i.e., the
number of layers) of the surrogate model’s structure primarily
affects HyperTheft’s functionality stealing. Without sufficient
layers in the surrogate model (i.e., the non-linearity is limited), the
generated weights may not be able to capture the functionality of
more complex tasks. However, this should not be a major concern,
as the insufficient-depth problem can be alleviated by majority
voting of multiple surrogate models, which is conducted offline and
does not bring extra cost to the victim DNN. In practice, users can
set a moderate level of depth for the surrogate model (e.g., ∼10). If
the recovered DNN weights do not have satisfactory results, users
can generate multiple weights (i.e., runHyperTheftmultiple times
with the same side channel trace) and conduct majority voting.

8.3 Attack Surface in Different Cases

Different Runtimes. To disclose the widespread leakage, we eval-
uate different versions of PyTorch.We also consider Glow, a popular
deep learning compiler that compiles DNNs into executables. Since
Glow does not evolve too much, we only evaluate its latest version.
Overall, the same DNN’s internal computations are implemented
distinctly in PyTorch and Glow-executables.

As in Table 4, for both Glow-executables and different versions
of PyTorch, HyperTheft can constantly recover the victim DNN’s
weights, indicating HyperTheft’s superiority and the wide exis-
tence of ciphertext side-channel leakage in different runtimes. That
is, the leakage is presumably due to issues in DNN’s own design (see
detailed discussion in Sec. 9), rather than implementation defects
in a specific runtime or version.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yuanyuan Yuan et al.

Table 4: Results of Glow and various PyTorch versions. We

evaluate binary classification w/o using majority voting.

Dataset DNN Surrogate Runtime Fid Fun

MNIST

LeNet

Conv

Glow 88∼93% 88∼92%
ResNet Glow 90∼94% 88∼94%
LeNet V1.13 86∼91% 87∼89%
ResNet V1.13 89∼90% 85∼91%
LeNet V1.10 88∼92% 87∼91%
ResNet V1.10 89∼93% 86∼90%
LeNet V1.7 90∼92% 86∼92%
ResNet V1.7 87∼94% 88∼91%

CIFAR10

LeNet

Conv

Glow 79∼80% 77∼81%
ResNet Glow 78∼81% 78∼79%
LeNet V1.13 78∼83% 76∼81%
ResNet V1.13 79∼85% 75∼83%
LeNet V1.10 80∼81% 76∼80%
ResNet V1.10 77∼85% 77∼82%
LeNet V1.7 79∼84% 78∼81%
ResNet V1.7 78∼86% 78∼83%

Table 5: Generating weights using ciphertext side channel

traces logged from the victim DNN’s multiple executions.

Dataset DNN Surrogate #Classes #Votes #Traces Fid Fun

ImageNet
ResNet50 Conv 10 1 5 87∼89% 86∼89%
ResNet50 Conv 10 1 11 86∼91% 86∼90%
ResNet50 Conv 10 1 21 90∼94% 92∼94%

Multiple Executions.To evaluate howmultiple side-channel traces
(derived from different executions of the victim DNN) can improve
HyperTheft’s recovered weights, we let HyperTheft generate
one weight for each trace and conduct majority voting among these
weights. Results are in Table 5. Compared with the 17-19th rows
in Table 3, the improvements brought by majority voting among
weights generated via, 1) multiple traces vs. 2) HyperTheft’s mul-
tiple runs using one trace, are comparable, indicating the merit of
HyperTheft’s stochastic generation.
Knowledge of DNN Structure. We evaluate how structure infor-
mation boosts the attack by using the victim DNN’s structure for
the surrogate model. By cross-comparing Table 6 with the 2nd-15th
rows in Table 3, we see that the results w/ and w/o structure in-
formation are comparable for binary classification and regression.
However, when knowing the structure information, the result of
10-class classification is better than using Conv as the surrogate
model, but is comparable to the Convdeep case in Table 3. This ob-
servation is consistent with our conclusion derived from Table 3:
the structure information primarily helps attackers to determine
an appropriate depth for the surrogate model. However, this can be
complemented by majority voting among multiple surrogate mod-
els (generated using single trace or multiple traces). For ViT cases,
while the regulation mechanism is critical when training a ViT
from scratch, it does not notably affect HyperTheft’s performance.
We infer that those public DNN slices’ weights, which were jointly
trained with private slices’ weights under the same regulation, help
HyperTheft to encode the regulation into its generated weight.

Although structures may differ in terms of connectivity or hy-
perparameters, their implementations share the same vulnerable
computing operations. E.g., the cascade_sum function (which per-
forms pairwise sum) is frequently called by different layers; see
more examples in the extended version [1]. This further highlights
the severity of weight leakage in TEE-shield DNNs. Previous works
often require the exact structure information to boost query-based

model inference [61], whereas HyperTheft can enhance query-
based attacks without such information, as evaluated below.

Table 6: Attack using the victim DNN’s structure.

Dataset DNN Surrogate #Classes Fid Fun
Stock LSTM LSTM N/A 91∼93% 1.44∼1.96
Chest LeNet LeNet 2 85∼91% 85∼89%
X-ray ResNet ResNet 2 87∼89% 86∼89%

MNIST
LeNet LeNet 2 86∼94% 85∼94%
ResNet ResNet 2 90∼94% 90∼93%
ViT ViT 2 91∼98% 91∼97%

CIFAR10
LeNet LeNet 2 78∼85% 77∼83%
ResNet ResNet 2 79∼85% 77∼85%
ViT ViT 2 80∼88% 79∼87%

ImageNet

LeNet LeNet 2 79∼87% 79∼86%
ResNet ResNet 2 78∼85% 78∼83%
ViT ViT 2 78∼86% 78∼85%

ResNet ResNet 10 79∼83% 77∼83%

Table 7: Attack with victim DNN’s in-task-domain data.

Dataset DNN #Classes Fun Budget

CIFAR10

LeNet (%) 2 77∼83%* ≥ 70%
LeNet (%) 2 90∼95% ≥ 80%
LeNet (!) 2 90∼95% ∼15%
ResNet (%) 2 78∼82%* ≥ 70%
ResNet (%) 2 90∼95% ≥ 80%
ResNet (!) 2 90∼95% ∼15%

ImageNet
ResNet (%) 10 68∼73%* ≥ 70%
ResNet (%) 10 90∼95% ≥ 80%
ResNet (!) 10 90∼95% ∼15%

* Fun achieved by HyperTheft under the weakest attack; see Table 3.
%: training the student model (i.e., Conv) from scratch.
!: initializing the student model (i.e., Conv) with our generated weights.

Task Domain & Query. As generally assumed by prior query-
based attack [12, 32, 61], even if the victim DNN’s training data
are private, it is possible to have some other data that cover the
victim DNN’s task domain. For instance, attackers have some pub-
lic cat and dog images when attacking a DNN classifying cat vs.
dog. Therefore, we also evaluate how HyperTheft can be further
enhanced in this scenario.

To ease the comparison with previous works, we follow their set-
tings where attackers query the victim DNN using in-task-domain
data, but only use the predictions (without confidence scores) as
labels to train a student model. Differently, we do not train the
student model from scratch — the student model is trained based
on HyperTheft’s generated weights (the generation does not use
in-task-domain data). Since prior query-based attacks primarily
focus on classification, we evaluate classification tasks.

Results are given in Table 7. Aligned to existing works, we report
the query budget as its relative percentage to the number of victim
DNN’s training data. By cross-comparing Table 3 with the 8th, 9th,
and 14th rows in Table 7, we see that, in order to achieve comparable
results withHyperTheft’s weakest-knowledge attack, query-based
attacks require at least 70% query budget. In contrast, while Hyper-
Theft’s generated weights from the weakest-knowledge attack are
not as good as the victim DNN, they can reach the same Fun as the
victim DNN with only ∼15% query budget, significantly reducing
the cost. In that sense,HyperTheft enables query-based attacks for
TEE-shielded DNNs since TEE’s mitigation aims to largely increase
the query budget (see Sec. 2.2).

HyperTheft: Thieving Model Weights from TEE-Shielded Neural Networks via Ciphertext Side Channels CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

8.4 Enabled Attacks

Recall that as introduced in Sec. 4, attackers can also leverage the
recovered weights to enable white-box attacks towards the victim
DNN. This section accordingly evaluates how HyperTheft can
enable two popular attacks, membership inference attack (MIA)
and bif-flip attack (BFA).

Table 8: Attack success rate (ASR) of membership inference

attacks enabled byHyperTheft. Upper bound (UB) denotes

ASR on the white-box victim DNN. Baseline is 50%.

Dataset DNN Surrogate ASR UB

MNIST LeNet Conv 65.7% 80.1%
ResNet Conv 65.9% 80.8%

Chest LeNet Conv 60.8% 72.7%
X-ray ResNet Conv 60.2% 71.6%

CIFAR10 LeNet Conv 57.7% 66.5%
ResNet Conv 57.0% 67.3%

ImageNet LeNet Conv 57.8% 67.3%
ResNet Conv 59.7% 66.6%

8.4.1 Membership Inference Attack. This section evaluates how
HyperTheft’s recovered DNNweights, which give attackers white-
box surrogate models, can enable/enhance MIA towards the (black-
box) victim DNN. Following the setup in previous works [79], we
construct a test suite where 50% of its data are the victim DNN’s
training data (i.e., only data from the corresponding sub-training
split) and the remaining 50% are non-training data. Therefore, the
baseline attack success rate (ASR) is 50% [79]. Note that training
and non-training data in the test suite have the same class, such
that MIA will not downgrade to class-wise classification. We adopt
MLDoctor [49] to conduct MIA. Each time we feed an input from
the test suite into HyperTheft’s generated surrogate model, and
record outputs from all layers of the surrogate model. These out-
puts are then concatenated and fed into MLDoctor to predict the
membership. In this setting, the surrogate model is generated under
the weakest-knowledge attack in Sec. 8.2.
Results & Analysis. Table 8 lists the MIA results. Interestingly,
despite that the surrogate model is never trained with victim DNN’s
training data, it still significantly improves the ASR (from 50%) to
∼65% for MNIST and ∼57% for CIFAR10 and ImageNet. As a ref-
erence, the ASR of directly applying MLDoctor on the white-box
victim DNN (i.e., upper bound ASR) is 80% for MNIST and 67% for
CIFAR10 and ImageNet. Recall that as evaluated in Sec. 8.2, besides
stealing the overall functionality from the victim DNN, Hyper-
Theft also infers some of its specific behaviors (e.g., predictions
for specific inputs), which explains why HyperTheft’s generated
surrogate model is useful for MIA towards the victim DNN.

8.4.2 Bit-Flip Attack. We also evaluate how HyperTheft’s recov-
ered DNNweights can enable BFA. As introduced in Sec. 2.2, to con-
duct BFA, the main prerequisite is localizing elements in a DNN’s
weight that are critical to the intelligence (which is infeasible in
TEE-shielded DNNs), such that bits can be flipped efficiently. Note
that BFA requires knowing the victim DNN’s structure and launch-
ing rowhammer in TEEs may have additional challenges [10, 11].
However, they are out of the scope of this paper; we primarily focus
on weight-related requirements that are enabled by HyperTheft.
To assess how HyperTheft boosts BFA, we generate the surrogate

model under the “weakest-knowledge + structure” setting. We fol-
low the localization strategy in DeepHammer [75], the state of the
art in this field, to localize critical weight elements9 in the surrogate
model and measure their overlapping (in terms of locations in the
DNN’s structure) with critical weight elements in the victim DNN.
Two metrics, precision and recall, are adopted in this evaluation.
Precision quantifies the percentage of victim DNN’s critical ele-
ments that are localized in the surrogate model. Recall, in contrast,
measures how many weight elements localized in the surrogate
model are also critical in the victim DNN.

Table 9: Results of bit-flip attack (BFA) enabled by Hyper-

Theft. BFA requires knowing the victim DNN’s structure.

Dataset DNN Surrogate Precision Recall

MNIST LeNet LeNet 12.0% 93.1%
ResNet ResNet 13.7% 94.0%

Chest LeNet LeNet 33.2% 95.7%
X-ray ResNet ResNet 34.4% 96.3%

CIFAR10 LeNet LeNet 63.7% 99.4%
ResNet ResNet 55.6% 99.1%

ImageNet LeNet LeNet 57.2% 98.8%
ResNet ResNet 59.3% 99.2%

Results & Analysis. Table 9 reports the results. The recall values
are promising: weight elements identified in the surrogate model
are highly likely to be critical in the victim DNN. While the preci-
sion is relatively lower (i.e., not all critical weight elements in the
victim DNN can be identified via the surrogate model), it should
not be a concern. In fact, launching BFA does not require iden-
tifying all the critical weight elements [62, 75]; usually ∼10 flips
can completely deplete a DNN’s intelligence. The identification
step primarily helps attackers to filter out non-critical bits since
flipping bits via rowhammer is costly [37, 62, 75]. With this regard,
recall should be a more important metric than precision. Thus, we
can conclude that our current results are sufficient to deliver the
prerequisite of BFA against TEE-shielded DNNs.

9 Discussion and Mitigation

Non-Linearity Enlarges Leakage. For cryptographic software
studied in prior works, ciphertext collisions can easily occur since
private keys only have bits 0/1. However, general DNNs evalu-
ated in this paper have floating-point intermediate outputs: since
the probability of sampling two identical floating-point values is
negligible, ciphertext collisions should rarely occur.

With manual inspection, we find that DNN’s non-linearity (i.e.,
the basis of DNN’s intelligence) is the primary root cause of the
frequent ciphertext collisions. Given continuous values within a cer-
tain range, non-linear functions often map them into smaller ranges.
For instance, the Softmax function in DNNs maps [−∞, +∞] into
[0, 1]. Also, the derivatives of DNN’s non-linear functions (e.g.,
Sigmoid) usually approach zero for large or tiny inputs, i.e., the
output values change negligibly with such inputs. Moreover, some
non-linear functions only output discrete values for certain inputs,
e.g., ReLU always outputs 0 if its input is negative. Overall, since
floating-point numbers have limited precision in modern comput-
ers (e.g., 32-bit), these non-linear mappings greatly increase the
9Most existing BFA works focus on quantized DNNs and identify weight bits [62, 75].
Since our evaluated DNNs are general floating-point DNNs, our evaluations mainly
focus on the weight element level.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yuanyuan Yuan et al.

frequency of identical intermediate outputs, leading to frequent
ciphertext collisions.
Hardware and Software Mitigations. Some recent TEEs (e.g.,
Intel TDX [14], ARM CCA [45]) redesign hardware architectures to
mitigate ciphertext side channels. For example, Intel TDX always
returns zeros when outer programs read the encrypted memory.
However, such hardware mitigations require modifying the current
hardware design, which is impractical for TEEs that have been
broadly used (e.g., AMD SEV [35]). Importantly, they cannot fully
eliminate ciphertext side channels because attackers can still access
the ciphertext via DMA devices [67] or physical attacks such as
memory bus snooping [40], cold boot attack [25], etc.

Li et al. [42] propose to mitigate the leakage via VMSA ran-
domization, so that ciphertext is no longer deterministic. However,
this scheme incurs considerable performance overheads and is not
adopted by vendors. On the other hand, we foresee the high feasi-
bility of implementing software-level randomization to specifically
mitigate the leakage in TEE-shielded DNNs. In fact, DNNs exhibit
robustness to small random perturbations [23] (not carefully crafted
adversarial perturbations [9]) on their intermediate outputs. Hence,
every time a DNN is executing, we can add random noise to DNN’s
intermediate outputs before they are written into memory. Since
the main purpose is diversifying the written values and reducing
collisions, we can make the noise negligible. To further minimize
the impact on DNN’s accuracy, we expect to accordingly refine
conventional training algorithms to make DNNs robust to such
noise. For example, existing robust training schemes [60] (which
improve DNN’s robustness to input perturbations) can be adapted
for noise in DNN’s intermediate outputs.

10 Conclusion

This paper presentsHyperTheft to steal DNNweights from cipher-
text side channels of TEE-shielded DNNs. We propose to generate
functionality-equivalent weights and demonstrate its effectiveness
and practicality. Weights generated by HyperTheft constantly
achieve high accuracy under various DNNs, datasets, scenarios,
and platforms, and can enable severe downstream DNN attacks.

Acknowledgments

We thank the anonymous reviewers for their constructive com-
ments. The HKUST authors were supported in part by an NS-
FC/RGC JRS grant under the contract N_HKUST605/23, a Google
Research Scholar Award, and a RGC CRF grant under the contract
C6015-23G. Yinqian Zhang was supported by NSFC grant number
62361166633.

References

[1] [n. d.]. Research Artifact. https://github.com/Yuanyuan-Yuan/HyperTheft.
[2] Shun-ichi Amari. 1993. Backpropagation and stochastic gradient descent method.

Neurocomputing (1993).
[3] ARM. 2023. Arm Confidential Compute Architecture software stack. https:

//developer.arm.com/documentation/den0127/latest.
[4] Saeid Asgari Taghanaki, Kumar Abhishek, Joseph Paul Cohen, Julien Cohen-

Adad, and Ghassan Hamarneh. 2021. Deep semantic segmentation of natural and
medical images: a review. Artificial Intelligence Review (2021).

[5] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. 2019. CSI NN:
Reverse engineering of neural network architectures through electromagnetic
side channel. In USENIX Security.

[6] Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Representation
learning: A review and new perspectives. IEEE T-PAMI (2013).

[7] Jakub Breier, Dirmanto Jap, Xiaolu Hou, Shivam Bhasin, and Yang Liu. 2021.
SNIFF: reverse engineering of neural networks with fault attacks. IEEE Transac-
tions on Reliability 71, 4 (2021), 1527–1539.

[8] Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and
Florian Tramer. 2022. Membership inference attacks from first principles. In IEEE
S&P.

[9] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness of
neural networks. In IEEE S&P.

[10] Pierre Carru. 2017. Attack ARM TrustZone using Rowhammer. In GreHack.
[11] David Cerdeira, Nuno Santos, Pedro Fonseca, and Sandro Pinto. 2020. Sok:

Understanding the prevailing security vulnerabilities in trustzone-assisted tee
systems. In IEEE S&P.

[12] Varun Chandrasekaran, Kamalika Chaudhuri, Irene Giacomelli, Somesh Jha, and
Songbai Yan. 2020. Exploring connections between active learning and model
extraction. In USENIX Security.

[13] Vinod Kumar Chauhan, Jiandong Zhou, Ping Lu, Soheila Molaei, and David A
Clifton. 2023. A brief review of hypernetworks in deep learning. arXiv preprint
arXiv:2306.06955 (2023).

[14] Pau-Chen Cheng, Wojciech Ozga, Enriquillo Valdez, Salman Ahmed, Zhongshu
Gu, Hani Jamjoom, Hubertus Franke, and James Bottomley. 2023. Intel TDX
Demystified: A Top-Down Approach. preprint arXiv:2303.15540 (2023).

[15] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 248–255.

[16] Li Deng. 2012. The mnist database of handwritten digit images for machine
learning research [best of the web]. IEEE signal processing magazine 29, 6 (2012),
141–142.

[17] Sen Deng, Mengyuan Li, Yining Tang, Shuai Wang, Shoumeng Yan, and Yin-
qian Zhang. 2023. CipherH: Automated Detection of Ciphertext Side-channel
Vulnerabilities in Cryptographic Implementations. In USENIX Security.

[18] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An Image is Worth 16x16 Words: Trans-
formers for Image Recognition at Scale. In International Conference on Learning
Representations.

[19] Anuj Dubey, Rosario Cammarota, and Aydin Aysu. 2020. Maskednet: The first
hardware inference engine aiming power side-channel protection. In IEEE HOST.

[20] Jonathan Frankle and Michael Carbin. 2018. The Lottery Ticket Hypothesis:
Finding Sparse, Trainable Neural Networks. In ICLR.

[21] Mudasir A Ganaie, Minghui Hu, AK Malik, M Tanveer, and PN Suganthan. 2022.
Ensemble deep learning: A review. Engineering Applications of Artificial Intelli-
gence (2022).

[22] Yansong Gao, Huming Qiu, Zhi Zhang, Binghui Wang, Hua Ma, Alsharif
Abuadbba, Minhui Xue, Anmin Fu, and Surya Nepal. 2024. DeepTheft: Stealing
DNN Model Architectures through Power Side Channel. In IEEE S&P.

[23] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat
Chaudhuri, and Martin Vechev. 2018. Ai2: Safety and robustness certification of
neural networks with abstract interpretation. In IEEE S&P.

[24] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. 2017.
Cache attacks on Intel SGX. In Proceedings of the 10th European Workshop on
Systems Security. 1–6.

[25] Michael Gruhn and Tilo Müller. 2013. On the practicability of cold boot attacks.
In 2013 International Conference on Availability, Reliability and Security. IEEE,
390–397.

[26] David Ha, Andrew M Dai, and Quoc V Le. 2016. HyperNetworks. In International
Conference on Learning Representations.

[27] Sanghyun Hong, Michael Davinroy, Yiǧitcan Kaya, Stuart Nevans Locke, Ian
Rackow, Kevin Kulda, Dana Dachman-Soled, and Tudor Dumitraş. 2018. Security
analysis of deep neural networks operating in the presence of cache side-channel
attacks. arXiv preprint arXiv:1810.03487 (2018).

[28] Jiahui Hou, Huiqi Liu, Yunxin Liu, Yu Wang, Peng-Jun Wan, and Xiang-Yang
Li. 2022. Model Protection: Real-Time Privacy-Preserving Inference Service for
Model Privacy at the Edge. IEEE Trans. Dependable Secur. Comput. 19, 6 (2022),
4270–4284. https://doi.org/10.1109/TDSC.2021.3126315

[29] Bin Hu, Yan Wang, Jerry Cheng, Tianming Zhao, Yucheng Xie, Xiaonan Guo, and
Yingying Chen. 2023. Secure and Efficient Mobile DNN Using Trusted Execution
Environments. In Asia CCS.

[30] Weizhe Hua, Zhiru Zhang, and G Edward Suh. 2018. Reverse engineering convo-
lutional neural networks through side-channel information leaks. In DAC.

[31] Intel. 2023. Product brief, 3rd gen intel xeon scalable processor for
iot. https://www.intel.com/content/www/us/en/products/docs/processors/
embedded/3rd-gen-xeon-scalable-iot-product-brief.html.

https://github.com/Yuanyuan-Yuan/HyperTheft
https://developer.arm.com/documentation/den0127/latest
https://developer.arm.com/documentation/den0127/latest
https://doi.org/10.1109/TDSC.2021.3126315
https://www.intel.com/content/www/us/en/products/docs/processors/embedded/3rd-gen-xeon-scalable-iot-product-brief.html
https://www.intel.com/content/www/us/en/products/docs/processors/embedded/3rd-gen-xeon-scalable-iot-product-brief.html

HyperTheft: Thieving Model Weights from TEE-Shielded Neural Networks via Ciphertext Side Channels CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

[32] Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex Kurakin, and Nicolas
Papernot. 2020. High accuracy and high fidelity extraction of neural networks.
In USENIX Security.

[33] Simon Johnson, Raghunandan Makaram, Amy Santoni, and Vinnie Scarlata. 2021.
Supporting intel sgx on multi-socket platforms. Intel Corp (2021).

[34] Kaggle. 2017. Stock Dataset. https://www.kaggle.com/datasets/borismarjanovic/
price-volume-data-for-all-us-stocks-etfs.

[35] David Kaplan, Jeremy Powell, and Tom Woller. 2016. AMD memory encryption.
White paper (2016), 13.

[36] Kyungtae Kim, Chung Hwan Kim, Junghwan John Rhee, Xiao Yu, Haifeng Chen,
Dave (Jing) Tian, and Byoungyoung Lee. 2020. Vessels: efficient and scalable
deep learning prediction on trusted processors. In SoCC.

[37] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014. Flipping bits in memory
without accessing them: An experimental study of DRAM disturbance errors.
ACM SIGARCH Computer Architecture News 42, 3 (2014), 361–372.

[38] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[39] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[40] Dayeol Lee, Dongha Jung, Ian T Fang, Chia-Che Tsai, and Raluca Ada Popa. 2020.
An Off-Chip attack on hardware enclaves via the memory bus. In 29th USENIX
Security Symposium (USENIX Security 20).

[41] Taegyeong Lee, Zhiqi Lin, Saumay Pushp, Caihua Li, Yunxin Liu, Youngki Lee,
Fengyuan Xu, Chenren Xu, Lintao Zhang, and Junehwa Song. 2019. Occlumency:
Privacy-preserving Remote Deep-learning Inference Using SGX. In MobiCom.

[42] Mengyuan Li, Luca Wilke, Jan Wichelmann, Thomas Eisenbarth, Radu Teodor-
escu, and Yinqian Zhang. 2022. A systematic look at ciphertext side channels on
AMD SEV-SNP. In IEEE S&P.

[43] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li, and Yueqiang Cheng. 2021.
CIPHERLEAKS: Breaking Constant-time Cryptography on AMD SEV via the
Ciphertext Side Channel. In USENIX Security.

[44] Shaofeng Li, Xinyu Wang, Minhui Xue, Haojin Zhu, Zhi Zhang, Yansong Gao,
Wen Wu, and Xuemin Sherman Shen. 2024. Yes, One-Bit-Flip Matters! Universal
DNN Model Inference Depletion with Runtime Code Fault Injection. In USENIX
Security.

[45] Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu, Jason Nieh, Yousuf Sait, and
Gareth Stockwell. 2022. Design and verification of the arm confidential compute
architecture. In OSDI.

[46] Yuepeng Li, Deze Zeng, Lin Gu, Quan Chen, Song Guo, Albert Y. Zomaya, and
Minyi Guo. 2021. Lasagna: Accelerating Secure Deep Learning Inference in
SGX-enabled Edge Cloud. In SoCC.

[47] Zheng Li, Yiyong Liu, Xinlei He, Ning Yu, Michael Backes, and Yang Zhang. 2022.
Auditing membership leakages of multi-exit networks. In CCS.

[48] Yuntao Liu and Ankur Srivastava. 2020. Ganred: Gan-based reverse engineering
of dnns via cache side-channel. In Proceedings of the 2020 ACM SIGSAC Conference
on Cloud Computing Security Workshop.

[49] Yugeng Liu, Rui Wen, Xinlei He, Ahmed Salem, Zhikun Zhang, Michael Backes,
Emiliano De Cristofaro, Mario Fritz, and Yang Zhang. 2022. ML-Doctor: Holistic
Risk Assessment of Inference Attacks Against Machine Learning Models. In
USENIX Security.

[50] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
building customized program analysis tools with dynamic instrumentation. In
PLDI.

[51] Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz, and Ohad Shamir. 2020. Prov-
ing the lottery ticket hypothesis: Pruning is all you need. In International Confer-
ence on Machine Learning. PMLR, 6682–6691.

[52] Fan Mo, Ali Shahin Shamsabadi, Kleomenis Katevas, Soteris Demetriou, Ilias
Leontiadis, Andrea Cavallaro, and Hamed Haddadi. 2020. DarkneTZ: towards
model privacy at the edge using trusted execution environments. In MobiSys
’20: The 18th Annual International Conference on Mobile Systems, Applications,
and Services, Toronto, Ontario, Canada, June 15-19, 2020, Eyal de Lara, Iqbal
Mohomed, Jason Nieh, and Elizabeth M. Belding (Eds.). ACM, 161–174. https:
//doi.org/10.1145/3386901.3388946

[53] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. 2017. Cachezoom:
How SGX amplifies the power of cache attacks. In Cryptographic Hardware and
Embedded Systems–CHES.

[54] Phong Q Nguyen and Jacques Stern. 2000. Lattice reduction in cryptology:
An update. In International Algorithmic Number Theory Symposium. Springer,
85–112.

[55] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein, and Christof
Fetzer. 2018. Varys: Protecting SGX Enclaves from Practical Side-Channel Attacks.
In USENIX ATC.

[56] Daryna Oliynyk, Rudolf Mayer, and Andreas Rauber. 2023. I know what you
trained last summer: A survey on stealing machine learning models and defences.
Comput. Surveys (2023).

[57] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. 2019. Knockoff nets:
Stealing functionality of black-box models. In CVPR. 4954–4963.

[58] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay
Celik, and Ananthram Swami. 2017. Practical black-box attacks against machine
learning. In ACM Asia CCS. 506–519.

[59] Karl Pearson. 1901. LIII. On lines and planes of closest fit to systems of points in
space. The London, Edinburgh, and Dublin philosophical magazine and journal of
science 2, 11 (1901), 559–572.

[60] Zhuang Qian, Kaizhu Huang, Qiu-FengWang, and Xu-Yao Zhang. 2022. A survey
of robust adversarial training in pattern recognition: Fundamental, theory, and
methodologies. Pattern Recognition 131 (2022), 108889.

[61] Adnan Siraj Rakin, Md Hafizul Islam Chowdhuryy, Fan Yao, and Deliang Fan.
2022. Deepsteal: Advanced model extractions leveraging efficient weight stealing
in memories. In IEEE S&P.

[62] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. 2019. Bit-flip attack: Crushing
neural network with progressive bit search. In ICCV.

[63] Neale Ratzlaff and Li Fuxin. 2019. Hypergan: A generative model for diverse,
performant neural networks. In ICML.

[64] Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Garret Catron, Summer Deng,
Roman Dzhabarov, Nick Gibson, James Hegeman, Meghan Lele, Roman Leven-
stein, et al. 2018. Glow: Graph lowering compiler techniques for neural networks.
arXiv preprint (2018).

[65] Shai Shalev-Shwartz and Shai Ben-David. 2014. Understanding machine learning:
From theory to algorithms. Cambridge university press.

[66] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Mem-
bership inference attacks against machine learning models. In IEEE S&P.

[67] Patrick Stewin and Iurii Bystrov. 2012. Understanding DMA malware. In Inter-
national Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer, 21–41.

[68] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
[n. d.]. Stealing machine learning models via prediction apis. In USENIX Sec’16.

[69] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang,
Vincent Bindschaedler, Haixu Tang, and Carl A Gunter. 2017. Leaky cauldron on
the dark land: Understanding memory side-channel hazards in SGX. In CCS.

[70] Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, and
Ronald M Summers. 2017. Chestx-ray8: Hospital-scale chest x-ray database and
benchmarks on weakly-supervised classification and localization of common
thorax diseases. In Proceedings of the IEEE conference on computer vision and
pattern recognition. 2097–2106.

[71] Samuel Weiser, David Schrammel, Lukas Bodner, and Raphael Spreitzer. 2020.
Big Numbers-Big Troubles: Systematically Analyzing Nonce Leakage in (EC)
DSA Implementations. In 29th USENIX Security Symposium (USENIX Security 20).
1767–1784.

[72] Luca Wilke, Jan Wichelmann, Anja Rabich, and Thomas Eisenbarth. 2023. SEV
Step. https://github.com/sev-step/sev-step.

[73] Yun Xiang, Zhuangzhi Chen, Zuohui Chen, Zebin Fang, Haiyang Hao, Jinyin
Chen, Yi Liu, Zhefu Wu, Qi Xuan, and Xiaoniu Yang. 2020. Open dnn box by
power side-channel attack. IEEE Transactions on Circuits and Systems II: Express
Briefs (2020).

[74] Mengjia Yan, ChristopherW Fletcher, and Josep Torrellas. [n. d.]. Cache telepathy:
Leveraging shared resource attacks to learn DNN architectures. In USENIX Sec’20.

[75] Fan Yao, Adnan Siraj Rakin, and Deliang Fan. 2020. {DeepHammer}: Depleting
the intelligence of deep neural networks through targeted chain of bit flips. In
USENIX Security.

[76] Honggang Yu, Haocheng Ma, Kaichen Yang, Yiqiang Zhao, and Yier Jin. 2020.
Deepem: Deep neural networks model recovery through em side-channel infor-
mation leakage. In 2020 IEEE HOST.

[77] Honggang Yu, Kaichen Yang, Teng Zhang, Yun-Yun Tsai, Tsung-Yi Ho, and Yier
Jin. 2020. CloudLeak: Large-Scale Deep Learning Models Stealing Through
Adversarial Examples.. In NDSS.

[78] Yuanyuan Yuan, Qi Pang, and ShuaiWang. 2022. Automated side channel analysis
of media software with manifold learning. In USENIX Security.

[79] Ziqi Zhang, Chen Gong, Yifeng Cai, Yuanyuan Yuan, Bingyan Liu, Ding Li, Yao
Guo, and Xiangqun Chen. 2024. No Privacy Left Outside: On the (In-) Security
of TEE-Shielded DNN Partition for On-Device ML. In IEEE S&P.

[80] Andrey Zhmoginov, Mark Sandler, and Maksym Vladymyrov. 2022. Hypertrans-
former: Model generation for supervised and semi-supervised few-shot learning.
In ICML.

[81] Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. 2019. Deconstructing
lottery tickets: Zeros, signs, and the supermask. NeuIPS (2019).

https://www.kaggle.com/datasets/borismarjanovic/price-volume-data-for-all-us-stocks-etfs
https://www.kaggle.com/datasets/borismarjanovic/price-volume-data-for-all-us-stocks-etfs
https://doi.org/10.1145/3386901.3388946
https://doi.org/10.1145/3386901.3388946
https://github.com/sev-step/sev-step

	Abstract
	1 Introduction
	2 Preliminaries and Background
	2.1 DNNs and Terminologies
	2.2 TEE Protection and Mitigated Attacks
	2.3 TEE and Ciphertext Side Channel

	3 Application Scope and Positioning
	4 Threat Model and Related Works
	4.1 Attacker's Knowledge and Actions

	5 Explorations and Insights
	6 Solution and Technical Details
	6.1 Overview and Goals
	6.2 Building and Training HyperTheft
	6.3 Optimizations for HyperTheft

	7 Implementation and Setup
	8 Evaluation
	8.1 Evaluation Setup
	8.2 The Weakest-Knowledge Attack
	8.3 Attack Surface in Different Cases
	8.4 Enabled Attacks

	9 Discussion and Mitigation
	10 Conclusion
	References

