
Decompiling x86 Deep Neural Network Executables

Zhibo Liu, Yuanyuan Yuan, Shuai Wang
The Hong Kong University of Science and Technology

{zliudc,yyuanaq,shuaiw}@cse.ust.hk

Xiaofei Xie
Singapore Management University

xfxie@smu.edu.sg

Lei Ma
University of Alberta

ma.lei@acm.org

Abstract
Due to their widespread use on heterogeneous hardware

devices, deep learning (DL) models are compiled into executa-
bles by DL compilers to fully leverage low-level hardware
primitives. This approach allows DL computations to be un-
dertaken at low cost across a variety of computing platforms,
including CPUs, GPUs, and various hardware accelerators.

We present BTD (Bin to DNN), a decompiler for deep neu-
ral network (DNN) executables. BTD takes DNN executables
and outputs full model specifications, including types of DNN
operators, network topology, dimensions, and parameters that
are (nearly) identical to those of the input models. BTD de-
livers a practical framework to process DNN executables
compiled by different DL compilers and with full optimiza-
tions enabled on x86 platforms. It employs learning-based
techniques to infer DNN operators, dynamic analysis to reveal
network architectures, and symbolic execution to facilitate
inferring dimensions and parameters of DNN operators.

Our evaluation reveals that BTD enables accurate recov-
ery of full specifications of complex DNNs with millions of
parameters (e.g., ResNet). The recovered DNN specifications
can be re-compiled into a new DNN executable exhibiting
identical behavior to the input executable. We show that BTD
can boost two representative attacks, adversarial example gen-
eration and knowledge stealing, against DNN executables.
We also demonstrate cross-architecture legacy code reuse us-
ing BTD, and envision BTD being used for other critical
downstream tasks like DNN security hardening and patching.

1 Preliminary

Fig. 1(a) depicts DNN model compilation. DNN compila-
tion can be divided into two phases [13], with each phase
manipulates one or several intermediate representations (IR).
Computation Graph. DL compiler inputs are typically high-
level model descriptions exported from DL frameworks like
PyTorch [18]. DNN models are typically represented as com-
putation graphs in DL frameworks. Fig. 1(b) shows a simple

graph of a multilayer convolutional neural network (CNN).
These graphs are usually high-level, with limited connections
to hardware. DL frameworks export computation graphs often
in ONNX format [1] as DL compiler inputs.
Frontend: Graph IRs and Optimizations. DL compilers
typically first convert DNN computation graphs into graph
IRs. Hardware-independent graph IRs define graph structure.
Network topology and layer dimensions encoded in graph
IRs can aid graph- and node-level optimizations including
operator fusion, static memory planning, and layout transfor-
mation [5, 21].
Backend: Low-Level IRs and Optimizations. Hardware-
specific low-level IRs are generated from graph IRs. Instead
of translating graph IRs directly into standard IRs like LLVM
IR [12], low-level IRs are employed as an intermediary step
for customized optimizations using prior knowledge of DL
models and hardware characteristics. Graph IR operators can
be converted into low-level linear algebra operators [21]. Such
representations alleviate the hurdles of directly supporting
many high-level operators on each hardware target.
Backend: Scheduling and Tuning. Policies mapping an op-
erator to low-level code are called schedules. A compiler
backend often searches a vast combinatorial scheduling space
for optimal parameter settings like loop unrolling factors.
Halide [20] introduces a scheduling language with manual and
automated schedule optimization primitives. Recent works
explore launching auto scheduling and tuning to enhance op-
timization [3, 5, 6, 17, 25, 28, 29]. These methods alleviate
manual efforts to decide schedules and optimal parameters.
Backend: Code Gen. Low-level IRs are compiled to gener-
ate code for different hardware targets like CPUs and GPUs.
When generating machine code, a DNN operator (or several
fused operators) is typically compiled into an individual as-
sembly function. Low-level IRs can be converted into mature
tool-chains IRs like LLVM to explore hardware-specific opti-
mizations. For instance, Glow [21] can perform fine-grained
loop-oriented optimizations in LLVM IR. DL compilers like
TVM and Glow compile optimized IR code into standalone
executables.



w1 w2 …

mergeable nodes operator optimization

Model
Specification

Computation
Graph Creation

Graph IR &
Optimization

Low-Level IR

Hardware-specific
Optimization

(Auto) Scheduling
& (Auto) Tuning

Code Gen &
Optimization

DNN
Executable

(a) DNN compilation pipeline.

(b) Sample DNN computation graph. DNN compiler frontend looks for holistic
opt. chances like mergeable nodes, whereas backend explores efficient machine
code for each operator.

Conv ReLU ConvPool

Figure 1: The high-level workflow of DL compilation.

2 Decompiling DNN Executables

Definition. BTD decompiles DL executables to recover DNN
high-level specifications. The full specifications include: 1
DNN operators (e.g., ReLU, Pooling, and Conv) and their
topological connectivity, 2 dimensions of each DNN oper-
ator, such as #channels in Conv, and 3 parameters of each
DNN operator, such as weights and biases, which are im-
portant configurations learned during model training. Sec. 3
details BTD’s processes to recover each component.
Comparison with C/C++ Decompilation. BTD is different
from C/C++ decompilers. C/C++ decompilation takes exe-
cutable and recovers C/C++ code that is visually similar to
the original source code. Contrarily, we explore decompiling
DNN executables to recover original DNN models. The main
differences and common challenges are summarized below.
Statements vs. Higher-Level Semantics: Software decompi-
lation, holistically speaking, line-by-line translates machine
instructions into C/C++ statements. In contrast, BTD recovers
higher-level model specifications from machine instructions.
This difference clarifies that a C decompiler is not sufficient
for decompilation of DNN executables.
End Goal: C/C++ compilation prunes high-level program
features, such as local variables, types, symbol tables, and
high-level control structures. Software decompilation is fun-
damentally undecidable [7], and to date, decompiled C/C++
code mainly aids (human-based) analysis and comprehension,
not recompilation. BTD decompiles DNN executables into
high-level DNN specifications, resulting in a functional exe-
cutable after recompilation. Besides helping (human-based)
comprehension, BTD boosts model reuse, migration, security
hardening, and adversarial attacks.

3 Design

Decompiling DNN executables is challenging due to the mis-
match between instruction-level semantics and high-level
model specifications. DNN executables lack high-level in-
formation regarding operators, topologies, and dimensions.
Therefore, decompiling DNN executables presents numer-
ous reverse engineering hurdles, as it is difficult to deduce
high-level model specifications from low-level instructions.

BTD delivers practical decompilation based on the invari-
ant semantics of DNN operators. Our intuition is simple: DL
compilers generate distinct low-level code but retain operator

high-level semantics, because DNN operators are generally
defined in a clean and rigorous manner. Therefore, recovering
operator semantics should facilitate decompilation generic
across compilers and optimizations. Besides, as invariant se-
mantics reflect high-level information, e.g., operator types
and dimensions, we can infer model abstractions accurately.

Fig. 2(a) depicts the BTD workflow. We first train a neural
model to map assembly functions to DNN operators. Re-
cent works perform representation learning by treating x86
opcodes as natural language tokens [8, 9, 14, 19, 26]. These
works help comprehend x86 assembly code and assist down-
stream tasks like matching similar code. Instead of defining
explicit patterns over x86 opcodes to infer DNN operators
(which could be tedious and need manual efforts), we use
representation learning and treat x86 opcodes as language
tokens.

Given recovered DNN operators, we reconstruct the net-
work topology using dynamic analysis. In this step, DNN
operators are chained into a computation graph. Specifically,
a DNN operator has a fixed number of inputs and outputs [2].
According to our observation, DL compilers compile DNN
operators into assembly functions and pass inputs and outputs
as memory pointers through function arguments. We use In-
tel Pin [15], a dynamic instrumentation tool, to hook every
callsite. During runtime, we record the memory addresses of
inputs/outputs passed to callsites and connect two operators
if the successor’s inputs match the predecessor’s outputs.

We then use trace-based symbolic execution to extract op-
erator semantics from assembly code and then recover dimen-
sions and parameters with semantics-based patterns (Sec. ??).
Some operators are too costly for symbolic execution to ana-
lyze. We use taint analysis to keep only tainted sub-traces for
more expensive symbolic execution to analyze.

Dimensions and parameters configure DNN operators.
Fig. 2(b) shows representative cases. We define patterns over
the extracted symbolic constraints, which enable recovering
dimensions and parameter layouts. We then use Intel Pin to
dump parameters to disk at runtime. With recovered dimen-
sions and dumped parameters in data bytes, we can recover
well-formed parameters.

4 Implementation

BTD is primarily written in Python with about 11K LOC.
Our Pin plugins contain about 3.1K C++ code. The cur-
rent implementation decompiles 64-bit executables in the



Type Dimension Parameter Operators

Ⅰ NA NA
ReLU; Sigmod; … Add; Sub; Negative; Sqrt; …

ExpandDims; BatchFlatten; … 

Ⅱ ✓ NA Pooling;

Ⅲ NA ✓ BiasAdd; Multiply; Divide; BN;

Ⅳ ✓ ✓ Conv; FC; Embedding

(b) Four types of operators.

DNN
Executable

Disassembling
DNN Operator

Recovery

Topology
Recovery

Dimension &
Parameter Recovery

Model

(a) Workflow.

Figure 2: Decompilation workflow. Here “NA” in the “Dimension” column denotes an easy case where output dimension of
an operator O equals to its input dimension and no other dimensions associated with O. We find that in non-trivial DNN, it is
sufficient to decide O’s dimensions after propagating dimensions from other operators on the DNN computation graph.

ELF format on x86 platforms. We use LSTM for DNN op-
erators inference in an “out-of-the-box” manner. BTD is
evaluated by the USENIX Security’23 AE committee and
awarded with Available, Functional, and Reproduced badges.
We open source BTD at https://github.com/monkbai/
DNN-decompiler.

Table 1: Compilers evaluated in our study.
Tool Name Publication Developer Version (git commit)

TVM [5] OSDI ’18 Amazon
v0.7.0
v0.8.0

v0.9.dev

Glow [21] arXiv Facebook
2020 (07a82bd9fe97dfd)
2021 (97835cec670bd2f)
2022 (793fec7fb0269db)

NNFusion [16] OSDI ’20 Microsoft v0.2
v0.3

5 Evaluation

We evaluated BTD with seven real-world CV models and
an NLP model compiled with eight versions of compilers
to provide a comprehensive evaluation. BTD can produce
correct model specifications on 59 of 65 DNN executables,
and experienced users can quickly fix 3 of 6 remaining errors.
Nevertheless, we recognize that some errors cannot be easily
fixed by normal users. In the evaluation, we only use ground
truths to verify the correctness of decompilation results. BTD
is designed to cope with real-world settings and does not rely
on any ground truth. Table 1 lists compilers we used. Table 2
lists all evaluated DNN models.

Overall, BTD can decompile DNN executables with neg-
ligible errors over all settings. Four dimension failures in
ResNet18 (TVM -O0) are due to a Conv optimization, while
all dimensions of ResNet18 (TVM -O3) are correctly recov-
ered. Besides, despite huge volume of parameters in each
model, the results are promising. BTD failed to recover about
73K (0.7%) parameters of an optimized Conv operator in
ResNet18 (TVM -O3) due to its specially-optimized memory
layout. In addition to that, all other models can be decom-
piled and recompiled into new models manifesting identical
behavior.

6 Conclusion

We presented BTD, a decompiler for x86 DNN executables.
BTD recovers full DNN models from executables, including
operator types, network topology, dimensions, and parame-
ters. Our evaluation reports promising results by successfully
decompiling and further recompiling executables compiled
from popular DNN models using different DL compilers.

References

[1] Onnx. https://onnx.ai/, 2021.

[2] ONNX Operators . https://github.com/onnx/
onnx/blob/main/docs/Operators.md, 2022.

[3] Andrew Adams, Karima Ma, Luke Anderson, Riyadh
Baghdadi, Tzu-Mao Li, Michaël Gharbi, Benoit Steiner,
Steven Johnson, Kayvon Fatahalian, Frédo Durand, et al.
Learning to optimize halide with tree search and random
programs. ACM TOG, 38(4):1–12, 2019.

[4] Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. Enriching word vectors with subword
information. TACL, 5:135–146, 2017.

[5] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, et al. {TVM}:
An automated end-to-end optimizing compiler for deep
learning. In 13th USENIX OSDI, pages 578–594, 2018.

[6] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang,
Thierry Moreau, Luis Ceze, Carlos Guestrin, and Arvind
Krishnamurthy. Learning to optimize tensor programs.
NeurIPS, 31:3389–3400, 2018.

[7] Cristina Cifuentes and K. John Gough. Decompilation
of binary programs. Softw. Pract. Exper., 25(7):811–829,
July 1995.

[8] S. H. Ding, B. M. Fung, and P. Charland. Asm2Vec:
Boosting static representation robustness for binary
clone search against code obfuscation and compiler op-
timization. In IEEE S&P, 2019.

[9] Yue Duan, Xuezixiang Li, Jinghan Wang, and Heng Yin.
DeepBinDiff: Learning program-wide code representa-
tions for binary diffing. In NDSS, 2020.

https://github.com/monkbai/DNN-decompiler
https://github.com/monkbai/DNN-decompiler
https://onnx.ai/
https://github.com/onnx/onnx/blob/main/docs/Operators.md
https://github.com/onnx/onnx/blob/main/docs/Operators.md


Table 2: Statistics of DNN models and their compiled executables evaluated in our study.
Model #Parameters #Operators TVM -O0 TVM -O3 Glow -O3

Avg. #Inst. Avg. #Func. Avg. #Inst. Avg. #Func. Avg. #Inst. Avg. #Func.
Resnet18 [10] 11,703,912 69 49,762 281 61,002 204 11,108 39
VGG16 [22] 138,357,544 41 40,205 215 41,750 185 5,729 33
FastText [4] 2,500,101 3 9,867 142 7,477 131 405 14
Inception [23] 6,998,552 105 121,481 615 74,992 356 30,452 112
Shufflenet [27] 2,294,784 152 56,147 407 34,637 228 33,537 59
Mobilenet [11] 3,487,816 89 69,903 363 46,214 228 37,331 52
Efficientnet [24] 12,966,032 216 89,772 546 49,285 244 13,749 67

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
CVPR, pages 770–778, 2016.

[11] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861, 2017.

[12] Chris Lattner and Vikram Adve. LLVM: A compilation
framework for lifelong program analysis & transforma-
tion. In Proceedings of the International Symposium on
Code Generation and Optimization: Feedback-directed
and Runtime Optimization, CGO ’04, pages 75–, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

[13] Mingzhen Li, Yi Liu, Xiaoyan Liu, Qingxiao Sun, Xin
You, Hailong Yang, Zhongzhi Luan, Lin Gan, Guangwen
Yang, and Depei Qian. The deep learning compiler: A
comprehensive survey. TPDS, 2020.

[14] Xuezixiang Li, Qu Yu, and Heng Yin. PalmTree: Learn-
ing an assembly language model for instruction embed-
ding. In ACM CCS, 2021.

[15] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish
Patil, Artur Klauser, Geoff Lowney, Steven Wallace, Vi-
jay Janapa Reddi, and Kim Hazelwood. Pin: building
customized program analysis tools with dynamic instru-
mentation. In PLDI, 2005.

[16] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue,
Youshan Miao, Wei Cui, Wenxiang Hu, Fan Yang, Lintao
Zhang, and Lidong Zhou. Rammer: Enabling holistic
deep learning compiler optimizations with rtasks. In
14th USENIX OSDI, pages 881–897, 2020.

[17] Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet,
Jonathan Ragan-Kelley, and Kayvon Fatahalian. Auto-
matically scheduling halide image processing pipelines.
ACM TOG, 35(4):1–11, 2016.

[18] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
Pytorch: An imperative style, high-performance deep
learning library. In NeurIPS, 2019.

[19] Kexin Pei, Zhou Xuan, Junfeng Yang, Suman Jana, and
Baishakhi Ray. TREX: Learning execution semantics
from micro-traces for binary similarity. arXiv, 2021.

[20] Jonathan Ragan-Kelley, Connelly Barnes, Andrew
Adams, Sylvain Paris, Frédo Durand, and Saman Ama-
rasinghe. Halide: a language and compiler for optimiz-
ing parallelism, locality, and recomputation in image
processing pipelines. Acm Sigplan Notices, 2013.

[21] Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Garret
Catron, Summer Deng, Roman Dzhabarov, Nick Gibson,
James Hegeman, Meghan Lele, Roman Levenstein, et al.
Glow: Graph lowering compiler techniques for neural
networks. arXiv preprint, 2018.

[22] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

[23] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception
architecture for computer vision. In CVPR, pages 2818–
2826, 2016.

[24] Mingxing Tan and Quoc Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. In
ICML, pages 6105–6114. PMLR, 2019.

[25] Nicolas Vasilache, Oleksandr Zinenko, Theodoros
Theodoridis, Priya Goyal, Zachary DeVito, William S
Moses, Sven Verdoolaege, Andrew Adams, and Albert
Cohen. Tensor comprehensions: Framework-agnostic
high-performance machine learning abstractions. arXiv
preprint arXiv:1802.04730, 2018.

[26] Zeping Yu, Rui Cao, Qiyi Tang, Sen Nie, Junzhou
Huang, and Shi Wu. Order matters: Semantic-aware
neural networks for binary code similarity detection.
AAAI, 2020.

[27] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian
Sun. Shufflenet: An extremely efficient convolutional
neural network for mobile devices. In CVPR, 2018.

[28] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,
Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang,
Danyang Zhuo, Koushik Sen, et al. Ansor: Generating
high-performance tensor programs for deep learning. In
14th USENIX OSDI, pages 863–879, 2020.

[29] Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and
Kaiwen Sheng. Flextensor: An automatic schedule ex-
ploration and optimization framework for tensor com-
putation on heterogeneous system. In ASPLOS, 2020.


	Preliminary
	Decompiling DNN Executables
	Design
	Implementation
	Evaluation
	Conclusion

